DACTC	CIMITI	ATIONI	AD

Course Code	20ES1355	Year	II	Semester	I
Course	Engineering	Branch	ECE	Course Type	Lab
Category	Sciences				
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous	15	Semester	35	Total Marks:	50
Internal		End			
Evaluation:		Evaluation:			

	Course				
	Outcomes				
Upor	successful completion of the course, the student will be able to				
CO1	Analyse various types of signals and sequences.				
CO2	Apply convolution and correlation operations on different signals				
CO3	Analyse various circuits in the time and transform domains using transient				
	analysis methods.				
CO4	Analyse various networks by applying transformation techniques, mesh				
	analysis, nodal				
	analysis and network theorems				
CO5	Determine the characteristics of different two port networks				
CO6	Make an effective report based on experiments.				

Contribu	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3											3	
CO2	3												3	
CO3		2											2	
CO4		2											2	
CO5					2								2	
CO6										3			3	
Average* (Roundedto	3	3	3		2					3			3	
nearest Integer).,														

Syllabus

	Any Ten Experiments (H/W or Simulation)					
Expt. No.	Contents	Mapped CO				
1	Generation of Various Signals and Sequences such as Unit impulse, Unit step, Square, Triangular, Sinusoidal, Ramp and Sync functions					
2	Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting and Folding	CO1,CO6				
3	Verification of Linearity and Time Invariance properties of a given Continuous / Discrete-time system.	CO1,CO6				
4	Convolution of Signals and Sequences.	CO1,CO2,CO6				

	5	Computation of Unit Sample and Unit Step Response of given LTI System	CO1,CO2,CO6
	6	Find the Fourier Transform of a given signal and plot its magnitude and phase spectrum	CO1,CO2,CO6
,	7	Auto Correlation and Cross Correlation of Signals and Sequences	CO1,CO2,CO6
	8	Experimental determination of time constant of series RL & RC circuits	CO1,CO3,CO6
	9	Experimental determination of frequency response of RLC circuits	CO1,CO3,CO6
1	10	Experimental verification of Thevenin's and Norton's theorems	CO4,CO6
1	11	Experimental verification of Superposition Theorem& Maximum power transfer Theorem	CO1,CO4,CO6
1	12	Simulation of a given series resonance circuit	CO1,CO5,CO6
1	13	Determination of parameters for a given two port network	CO5,CO4,CO6

Learning Resources

Text Books

- 1. A. V. Oppenheim, Alan S. Wilsky with S.H. Nawab, 'Signals and Systems', 2/e, Pearson, 1997
- 2. M. E.Van Valkenburg, Network Analysis, III Edition, Pearson Education
- 3. A. Sudhakar and Shyammohan S. Palli, Circuits and Networks, 5th Ed.,McGraw Hill

Reference Books

- 1. Simon Haykin, Barry Van Veen, 'Signals and Systems', 2/e, Wiley Student Edition.
- 2. Bhagawandas P. Lathi, 'Linear Signals and Systems', Oxford University Press,
- 2009.3. Signals and Systems using MATLAB, Kindle Edition, Luis Chaparro
- 4. William H. Hayt, Jack E. Kimmerly and Steven M. Durbin, Engineering Circuit Analysis, 8th

Edition, Tata McGraw Hill

5. Ravish R. Singh , Network Analysis and Synthesis, First Edition, Tata McGraw Hill Education(India) Pvt. Ltd, New Delhi

e- Resources & other digital material

- 1. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20an d
 - %20System/TOC-M1.htm
- 2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20an d
 - %20System/Course%20Objective.htm.
- 3. http://www.stanford.edu/~boyd.ee102
- 4. http://www.ece.gatech.edu/users/bonnie/book
- 5. http://ocw.mit.edu
- 6. https://www.tutorialspoint.com/network_theory/network_theory_quick_guide.htm
- 7. https://nptel.ac.in/courses/108/105/108105159/