20ES1351-BASIC SIMULATION LAB

Course Code	20ES1351	Year	Π	Semester	Ι
Course	Engineering	Branch	ECE	Course Type	Lab
Category	Sciences				
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Analyse various types of signals and sequences.					
CO2	Apply convolution and correlation operations on different signals					
CO3	Analyse various circuits in the time and transform domains using transient analysis methods					
CO4	Analyse various networks by applying transformation techniques, mesh analysis, nodal					
	analysis and network theorems					
CO5	Determine the characteristics of different two port networks					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	3	1				2			2	
CO2	3	3	2	2	3	2				2			3	
CO3	3	2	3	3	3	1				2			2	
CO4	3	3	2	3	3	2				3			3	
CO5	3	2	2	2	3	1				2			3	
Average* (Rounded to nearest integer)	3	2	2	2	3	1				2			3	

Syllabus						
Expt.	Contents	Mapped CO				
No.						
Ι	Generation of Various Signals and Sequences such as Unit	CO1				
	impulse, Unit step, Square, Triangular, Sinusoidal, Ramp and					
	Sync functions.					
II	Operations on Signals and Sequences such as Addition,	CO1				
	Multiplication, Scaling, Shifting and Folding.					
III	Verification of Linearity and Time Invariance properties of a	CO1				
	given Continuous / Discrete-time system.					
IV	Convolution of Signals and Sequences.	CO2				

		1
V	Computation of Unit Sample and Unit Step Response of given	CO1
	LTI System	
VI	Find the Fourier Transform of a given signal and plot its	CO1
	magnitude and phase spectrum.	
VII	Auto Correlation and Cross Correlation of Signals and Sequences	CO2
VIII	Experimental determination of time constant of series RL & RC circuits	CO3
IX	Experimental determination of frequency response of RLC circuits	CO3
Х	Experimental verification of Thevenin's and Norton's theorems	CO4
XI	Experimental verification of Superposition Theorem& Maximum power	CO4
	transfer Theorem	
XII	Simulation of a given series resonance circuit	CO4
XIII	Determination of parameters for a given two port network	CO5

Learning Resources Text Books 1. Alan V. Oppenheim, Alan S. Wilsky with S.Hamid Nawab, 'Signals and Systems', 2/e, Pearson Education, 1997 2. M. E.Van Valkenburg, Network Analysis, III Edition , Pearson Education 3. A. Sudhakar and Shyammohan S. Palli, Circuits and Networks, 5th Edition, McGraw Hill

Reference Books

1. Simon Haykin, Barry Van Veen, 'Signals and Systems', 2/e, Wiley Student Edition.

2. Bhagawandas P. Lathi, 'Linear Signals and Systems', Oxford University Press, 2009.

3. Signals and Systems using MATLAB, Kindle Edition, Luis Chaparro

4. William H. Hayt, Jack E. Kimmerly and Steven M. Durbin, Engineering Circuit Analysis, 8th Edition, TataMcGraw Hill

5. Ravish R. Singh , Network Analysis and Synthesis, First Edition, Tata McGraw Hill Education (India) Pvt. Ltd, New Delhi

e- Resources & other digital material

- 1. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/TOC-M1.htm
- 2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/Course%20Objective.htm.
- 3. <u>http://www.stanford.edu/~boyd.ee102</u>
- 4. <u>http://www.ece.gatech.edu/users/bonnie/book</u>
- 5. <u>http://ocw.mit.edu</u>
- 6. <u>https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desktop</u>
- 7. <u>https://www.tutorialspoint.com/network_theory/network_theory_quick_guide.htm</u>
- 8. <u>https://nptel.ac.in/courses/108/105/108105159/</u>