Digital Logic Design														
Course Code			20EC3302		Yea	r	II		Sen	Semester		Ι		
Course Category			Progr Cor	ram re	Bra	nch		EC	ĽΕ	Cou	Course Type		Theory	
Credits			3		L-T-P			3-0	-0	Pre	requisites		Nil	
Continuous Internal Evaluation:		1S n:	30)	Semester End Evaluation:		n:	70	0	Tot Ma	Total Marks:		100	
Course Outcomes														
Upon successful completion of the course, the student will be able to														
CO1 Illustrate Binary arithmetic operations using Complements														
CO2	CO2 Construct Logic gate circuits for given Boolean functions													
CO3 Simplify Boolean functions using Boolean Theorems, K-map & Tabulation Methods														
CO4	CO4 Analyze various Combinational and Sequential circuits													
CO5 Design Combinational and Sequential circuits for the given specifications														
						-								
Mar	oping	of co	urse o	utcom	es wi	th Pro	ogram	outc	omes	(CO/	PO/P	SO Ma	atrix)	
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2												1	
CO2	2												1	
CO3		2							2				2	

CO1	2							1	
CO2	2							1	
CO3		2				2		2	
CO4		3				3		2	
CO5			3			3		2	
Avg.	2	3	3			3		2	

Syllabus							
Unit No.	Contents						
1	Binary Codes : Signed Binary Numbers, Complements, Binary Codes, Error detection and correction code, Binary Logic. Boolean Algebra : Basic definitions, Axiomatic definition of Boolean algebra, Basic theorems and properties of Boolean algebra, Boolean functions, Canonical and Standard forms, Digital logic gates.	CO1, - CO3					
2	Simplification of Boolean functions : The map method, Four- variable map, Five-variable map, Tabulation Method, Product of sums simplification, Don't-care conditions, NAND and NOR implementation.	CO2, CO3					
3	Combinational Logic : Introduction, Design procedure, Half adder, Full Adder, Binary Adder/Subtractor, Decoders, Encoders, Multiplexers, De-Multiplexer, Code Converters.	CO2, CO4, CO5					
4	Sequential Logic: Latches, Flip-Flops, Excitation tables of Flip-	CO2,					

	flops, Conversion from one flip-flop to another, Registers, Shift registers, Ripple counters, Design of Synchronous Counters, Ring counter.	CO4, CO5
5	Synchronous Sequential Machines : Analysis of clocked sequential circuits, Mealy and Moore models, State reduction and assignment, Design procedure, Design and realization of circuits using various Flip-flops.	CO2, CO4, CO5

Learning Resources

Text Books

1. Michael D. Ciletti, M. Morris Mano, Digital Design, 4th Ed., Pearson Education, 2007.

Reference Books

- Zvi Kohavi, Switching and Finite Automata Theory, 2nd Ed., Tata Mc-Graw-Hill Education, 2008.
- 2. John F. Wakerly, Digital Design Principles and Practices, 4th Ed., Pearson Education, 2008.
- 3. Frederick J. Hill and Gerald R. Peterson, Introduction to Switching Theory and Logic Design, 3rd Ed., John Willey and Sons, 1981.
- 4. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, 7th Ed., Cengage Learning, India, 2013.

e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. <u>http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit/frame/index.html</u>