Life Sciences for Engineers

Course	20MC1201	Year	I	Semester	II	
Code						
Course	Mandatory	Branch	IT	Course Type	Theory	
Category						
Credits	0	L-T-P	2-0-2	Prerequisites	Nil	
Continuous	30	Semester End	70	Total	100	
Internal		Evaluation		Marks		
Evaluation						

Course Outcomes

Upon	Upon successful completion of the course, the student will be able to					
CO1	Apply the concepts of biology to create tangible and economically viable engineering goods.((L3)					
CO2	Analyse new technologies in Genetics biotechnology, pharmaceutical, medical and agricultural					
	fields from the knowledge gained from DNA technology.(L4)					
CO3	Apply the knowledge of biology to improve the living standards of societies.(L3)					
CO4	Apply the basic knowledge of genetics and DNA technology for disease diagnostics and					
	therapy.(L3)					
CO5	Analyse new technologies in biotechnology, pharmaceutical, medical and agricultural fields from					
	the knowledge gained from DNA technology.(L4)					

$\begin{array}{c} \textbf{Contribution of Course Outcomes towards achievement of Program Outcomes \& Strength of correlations} \ (3:High, \ 2: Medium, \ 1:Low) \end{array}$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3									2			1	
CO2					3					2			1	·
CO3					3					2			1	
CO4					3	3				2			1	
CO5	3					3				2			1	

Syllabus

Unit No.	Syllabus	Mapped CO's
1	Introduction to Biology	CO1
	Comparison of Biological organisms with manmade systems :Eye and	
	Camera ,Flying bird and Aircraft Ultra structure of cell: Prokaryotes and	
	Eukaryotes	
2	Bio-molecules	CO1
	Structure and functions of proteins (antibodies) Structure and functions	CO2
	of nucleic acids Industrial applications- Enzymes and Fermentation	
3	Bioenergetics and Cellular Respiration	
	Mechanism of photosynthesisGlycolysis	CO3
	TCA cycle Electron transport chain and Oxidative phosphorylation.	
4	Genetics Mendel'slaws Gene mapping	
	Single gene disorders in humans	CO3
		CO4
5	Recombinant DNA Technology	
	Recombinant vaccines, transgenic microbes, plants and animals. Animal	CO2
	cloning, biosensors, biochips.	CO5

E / M	N. Cil.	M 1002	
Expt. No.	Name of the experiment	Mapped CO's	
1	Dissect & mount different parts of plants using Microscope	CO1	
2	Estimation of Proteins by using Biuret method	CO2	
3	Estimation of enzyme activity.	CO2	
4	Estimation of chlorophyll content in some selected plants.	CO3	
5	Nitrogen Cycle: Estimation of Nitrates /Nitrites in soil by using	CO3	
	Spectrophotometer		
6	Mendal's laws and gene mapping	CO4, CO5	

Learning Resources

Text Books

- 1. Biology for Engineers-Wiley Editorial
- 2. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.
- 3. Biotechnology by U.Satyanarayana, Alliedand books Pvt. ltd. Kolkata

Reference Books

- 1. Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.
- 2. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012