DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

Course Code	20BS1201	Year	I	Semester	II
Course Category	Basic Science	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes: Upon successful completion of the course, the student will be able to

CO	Statement	Skill	BTL	Units
CO1	Understand the basic concepts of differential equations and vector calculus.	Understand	L2	1,2,3,4,5
CO2	Apply different methods to solve differential equations.	Apply	L3	1,2,3
CO3	Apply the differential operator to calculate the divergence and flux of vector point functions.	Apply	L3	4,5
CO4	Analyse the given differential equation to find the solution.	Analyze	L4	1,2,3
CO5	Calculate work done and flux by applying vector integral theorems.	Analyze	L4	4,5
CO6	Apply the concepts of differential equations and vector calculus to the given problem and submit a report.	Apply	L3	1,2,3,4,5

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)												
									PSO2				
CO1												1	
CO2	3								2	2		1	
CO3	3								2	2		1	
CO4		3										1	
CO5		3										1	
CO6	3								2	2		1	

Syllabus					
UNIT	Contents	Mapped COs			
I	Ordinary Differential Equations Of First order and First degree: Exact differential equations, Equations reducible to exact equations, orthogonal trajectories in Cartesian and polar coordinates. Applications: Newton's Law of cooling, Law of Natural growth and decay.	CO1, CO2, CO4, CO6			
II	Linear Differential Equations of Higher Order: O perator D, rules for finding complementary function, inverse operator, rules for finding particular integral, method of variation of parameters.	CO1, CO2, CO4, CO6			

DX/	DCI	m
PV	PNI	

Department of Mechanical Engineering

DI	71	\sim	Λ
$-\nu$	$^{\prime}$ $^{\prime}$,,	

III	Partial Differential Equations: Formation of partial differential equations, Linear equations of first order, Non-Linear equations of first order, Charpit's method.	CO1, CO2, CO4, CO6
IV	Vector Differentiation: Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, del applied to vector point functions- Divergence and Curl.	CO1, CO3, CO5, CO6
v	Vector Integration: Line integral, surface integral, volume integral, Green's theorem in the plane, Stoke's theorem, Divergence theorem (All theorems without proof). Applications: work done, flux.	CO1, CO3, CO5, CO6

Learning Resources

Text Books

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

Reference Books

1. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e, Alpha science International Ltd,2002

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/111/105/111105121/
- 2. https://nptel.ac.in/courses/111/105/111105122/
- 3. https://nptel.ac.in/courses/111/107/111107108/
- 4. http://202.53.81.118/ -> PVPSIT FED Moodle