PVP 19

MEMS	AND	NANOSENSORS

Course Code	19EC4801F	Year	IV	Semester	II
Course	Program Elective VI	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total	100
Internal		Evaluation:		Marks:	
Evaluation:					

---Course Outcomes

	oourse outcomes
Upon	successful completion of the course, the student will be able to
CO1	Explain the role of MEMS for various applications (L2)
CO2	Classify micro sensors& actuators used in MEMS and characterize them (L4)
CO3	Choose the suitable micro fabrication technology for given MEMS (L3)
CO4	Select suitable material and technology for MEMs Packaging (L3)

CO5 Categorize nano sensors and describe their characteristics (L4)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with manned PO

* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2		2			2	2		2			2		2
CO2	2		3			3	3		3			2		3
CO3	2		3			3	3		3			2		3
CO4	2		3			3	3		3			2		3
CO5	2		3			3	3		3			2		3
Average* (Rounded to nearest integer)	2		3			3	3		3			2		3

Syllabus					
Unit No.	Contents	Map ped CO			
I	Introduction: Need for miniaturization, Microsystems versus MEMS, micro fabrication, smart materials, structures and systems, integrated microsystems: micromechanical structures, microsensors, microactuators, applications of smart materials and microsystems. Applications of MEMS in the automotive, health care, aerospace, industrial products, consumer products and telecommunications.	CO1			

PVP 19

П	Microsensors and actuators: Silicon capacitive accelerometer, piezo						
	resistive pressure sensor, conductometric gas sensor, electrostatic comb						
	drive, a magnetic micro relay, portable blood analyzer, piezoelectric inkjet						
	print head, micromirror array for video projection, micro-PCR systems.						
	smart materials and systems						
III	Micro fabrication technologies: Silicon as a material for micromachining						
111	Thin-film deposition lithography doping etching silicon						
	micromachining: bulk and surface, specialized materials for microsystems:						
	polymers and ceramic materials advanced processes for micro fabrication.						
	wafer bonding techniques dissolved wafer processes LIGA process						
	Her Sil process						
IV	MEMs Packaging: Overview of Mechanical Packaging of						
1 V	Microelectronics Micro system Packaging Interfaces in Micro system						
	Deckering Essential Deckering Technologies Three Dimensional	CO4					
	Packaging, Essential Fackaging Technologies, Thee-Dimensional Deckaging Assembly of MEMS Selection of Deckaging Materials Signal						
	Mapping and Transduction Design Case: Pressure Sensor Packaging						
V	Napping and Transduction, Design Case. Pressure Sensor Packaging.						
v	thermal none concerts magnetic none concerts entities none concerts	CO5					
	chemical nano sensors, magnetic nano sensors, optical nano sensors,						
	chemical hano sensors and hano biosensors.						
-	Learning Resources						
Text	Books	1					
1. G.F	K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre, Micro a	nd					
Smart	t Systems, Wiley India, 2010.						
2. Tai	-Ran Hsu, "MEMS and Microsystems: Design and Manufacture", Wiley, 2008.						
3. Vir	iod Kumar Khanna, Nano sensors: Physical, Chemical and Biological, Series in Se	ensors,					
CRC	press Taylor and Francis Group, 2012.						
Refer	ence Books	10					
I. Vij	ay K. Varadan, K. J. Vinoy, S. Gopalakrishnan, Smart Material Systems and MEN	/15:					
Desig	n and Development Methodologies, John whey, 2006.						
2. Mo	named GadelHak, The MEMS Handbook, University of Notre Dame,						
3. M	-H. Bao, "Micromechanical Transducers: Pressure sensors, accelrometers, and						
gyros	copes", Elsevier, New York, 2000						
4. M.	J. Madou, "Fundamentals of Microfabrication", 3rd Ed, CRC, 2011						
e- Re	sources & other digital material						
1.	https://nptel.ac.in/courses/117/105/117105082/						
-	https://www.edx.org/course/micro-and-nanofabrication-mems						
2.							
2.							
2.							
2.							
2.							
2.							
2.							
2.							
2.							