PVP 19

Course Code	19EC4801E	Year	IV	Semester	II
Course Category	Program	Branch	ECE	Course Type	Theory
	Elective VI				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

	Course Outcomes
Upon s	successful completion of the course, the student will be able to
CO1	Apply design methodologies for embedded systems
CO2	Implement embedded systems design with specifications and technological choice.
CO3	Build fundamental systems such as sensors, actuators, converters, processors, intra- and inter-communication networks and interfaces.
CO4	Use modern hardware/software tools for building prototypes of embedded systems.

Mapping of course outcomes	with Program outcomes ((CO/ PO/PSO Matrix)
Note: 1- Weak correlation	2-Medium correlation	3-Strong correlation
* - Average value indicates	course correlation strengt	h with mapped PO

						0								
CO/PO & PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	3	3	3	2	3							2	3	3
CO-2	3	3	3	2	3							2	3	3
CO-3	3	3	3	2	3							2	3	3
CO-4	3	3	3	2	3							2	3	3
EC7T4A*	3	3	3	2	3							2	3	3

Syllabus						
Unit No.						
Ι	Introduction to Embedded Systems: Embedded systems vs general computing systems, history of embedded systems, classification of embedded systems, major application of embedded systems, purpose of embedded systems, elements of an embedded systems, core of the embedded systems, memory.	CO1				
II	Communication Buses in Embedded Systems: On board communication interfaces: I2C, SPI bus,1 Wire bus, parallel interface, External Communication interfaces:RS-232,RS485,USB,IEEE 1394 firewire bus, IrDA, Bluetooth, Wi-Fi, Zigbee.	CO2, CO4				
III	Software Development Tools: Software Development environment- IDE, assembler, compiler, linker, simulator, debugger, In-circuit emulator, target hardware debugging, need for hardware-software partitioning and co-design, Overview of UML, scope of UML modeling, conceptual model of UML, architectural, UML basic elements-diagram- Modeling techniques - structural, behavioral, activity diagrams	CO2, CO3				

PVP 19

IV	Introduction to Real-Time Operating Systems: A brief history of operating systems, defining an RTOS, the scheduler, introduction to	CO3
	task, task states and scheduling, round-robin scheduling algorithm, co-operative scheduling algorithm, pre-emptive scheduling algorithm, introduction to semaphores.	
V	Embedded System Application Development: Objectives, different	CO3,
	phases & modeling of the embedded product development life cycle (edlc), case studies on smart card- adaptive cruise control in a car - mobile phone software for key inputs.	CO4

Learning Resources

Text Books:

1. Rajkamal, 'Embedded system-Architecture, Programming, Design', 3e, TMH, 2017.

2. Shibu.K.V, "Introduction to Embedded Systems", Tata McGraw Hill, 2017

References:

1. Peckol, "Embedded system Design", JohnWiley&Sons, 2010

- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013
- 3. Embedded/Real-Time Systems, Dr. K.V.K.K. Prasad, dream Tech press

e- Resources & other digital material

- 1. Microsoft PowerPoint pcp_embedded_system_intro (iitb.ac.in)
- 2. NPTEL :: Electrical Engineering Embedded Systems