PVP 19

EMI and EMC TECHNIQUES

Course Code	19EC4801D	Year	IV	Semester	II
Course	Programme	Branch	ECE	Course Type	Theory
Category	Elective-VI				
Credits	3	L-T-P	3-0-0	Prerequisites	EM Theory
					Communications
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand and Gain basic knowledge of problems associated with EMI and EMC from					
	electronic circuits and systems					
CO2	2 Analyze various sources of EMI and various possibilities to provide EMC					
CO3	Analyze possible EMI prevention techniques such as grounding, shielding,					
	filtering and use of proper coupling mechanisms to improve compatibility of					
	electronic circuits and systems in a given electromagnetic environment.					
CO4	Measure emission immunity level from different systems to couple with the prescribed					
	EMC standards					

Mapping of course or	utcomes with Program outcom	nes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

" - Aver	* - Average value indicates course correlation strength with mapped PO														
COs	PC	D1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3												2
CO2	3	3	3	3	3	3	2						1		2
CO3	3	3	3	3	3	3	2						1		2
CO4	3	3	3	3	3	3	2						1		2
Average* (Rounded nearest integer)	to 3	3	3	3	3	3	2						1		2

	Syllabus								
Unit Contents									
No.	Contents								
Ι	Introduction: Electromagnetic environment, history, concepts,	CO1,							
	practical experience and concerns, frequency spectrum conservations,	CO2							
	an over-view of EMI/EMC, Overview on natural and nuclear sources								
	of EMI.								
II	EMI from Apparatus and circuits: Electromagnetic emissions,	CO1,							
	noise from relays and switches, non-linearities in circuits, passive	CO2							
	inter-modulation, cross-talk in transmission lines, transients in power								
	supply lines, electromagnetic interference(EMI), Overview on Open								
	area test sites and measurements								

PVP 19

III	Radiated and Conducted Interference Measurements: Anechoic	CO1,					
	chamber, TEM cell, GH TEM cell, characterization of conduction						
	Currents/voltages, conducted EM noise on power lines, conducted						
	EMI from Equipment, immunity to conducted EMI detectors and						
	measurements.						
IV	Grounding, Shielding and Bonding: Principles and Types of	CO1,					
	grounding, shielding and bonding,	CO3					
V	Cables, Connectors and Components: EMI suppression cables,	CO1,					
	EMC connectors, EMC gaskets, isolation transformers, opt isolators.	CO2,					
		CO4					

Learning Resources
Text Books
1.V.P.Kodali, Engineering Electromagnetic Compatibility,2/e, IEEE Press,2000
Reference Books
1.Clayton R Paul, Introduction to Electromagnetic Compatibility, John Wiley and Sons,2010
2. Electromagnetic Interference and Compatibility IMPACT series, IIT Delhi (Units1-9)
E - Resources:
1 https://emcfactnass.com/emc_testing_beginners_guide/emc_books_resources_training/

- 1. https://emcfastpass.com/emc-testing-beginners-guide/emc-books-resources-training/2. https://interferencetechnology.com/emc-resources/