INSTRUMENTATION AND SENSOR TECHNOLOGIES OF CIVIL ENGINEERING APPLICATIONS

Course Code	19EC2801A	Year	IV	Semester	II
Course Category:	Inter Disciplinary Elective-III	Branch	ECE	Course Type	Theory
Credits:	3	L-T-P	3-0-0	Prerequisites:	Nil
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Upon	Upon successful completion of the course, the student will be able to:						
CO1	Summarize various performance characteristics of instruments and the quality of						
COI	measurement (L2)						
CO ₂	Interpret the type of transducer based on the transduction principles(L2)						
CO3	Identify the relevant transducer for measurement of physical quantities (L3)						
CO4	Discover the additional attributes in advanced sensors and their role in Civil Engineering(L4)						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1										2
CO ₂	2	1	2	1										2
CO3	2	1	2	1										2
CO4	2	1	2	1										2
1- Low				2-Medium					3-High					

Course Content					
UNIT-1	Introduction: Definition of sensor/transducer-Block Diagram-elements of measurement system-classification of sensors/transducers-static characteristics-accuracy, precision, resolution, linearity, sensitivity, range, loading effect, threshold, dead time, dead zone, span. Errors in measurement: True value, static error, static correction, scale range and scale span, error calibration curve, readability, repeatability & reproducibility, drift and noise	CO-1			
UNIT-2	Resistive Transducers: Potentiometers-Linear POT, Rotary POT, characteristics of POT. Thermistors- Construction and its Resistance- Temperature characteristics. Thermocouples- Construction and its Resistance-emf characteristics Inductive Transducers: Principle of change of self inductance, Principle of change of mutual inductance, Linear variable differential transformer(LVDT), Rotary variable differential transformer(RVDT).	CO-2, CO-3			
UNIT-3	Capacitive Transducers: Introduction-Variable area type-variable air gap type- differential arrangement in capacitive transducers, variation of dielectric constant	CO-2,			

for measurement of liquid level, , variation of dielectric constant for							
	measurement of displacement, advantages & disadvantages of						
	Capacitive transducers .						
	PiezoelectricTransducers:						
	Measurement of Force, Modes of operation of Piezoelectric crystals,						
	properties of Piezoelectric crystals, use of Piezoelectric Transducers.						
	Hall effect Transducers:						
	Hall effect element, Measurement of displacement, current and power.						
	Optical Transducers:						
UNIT-4	Vacuum photo emissive cell and its characteristics, semi conductor						
	photo electric transducer- Photo conductive cell and its characteristics,						
	photo diode and its characteristics, photo voltaic cell and its						
	characteristics.						
	Digital and Smart Sensors:						
UNIT-5	Introduction to digital encoding transducer- digital displacement						
UN11-5	transducers- shaft encoder-optical encoder, Introduction to Smart						
	Sensors, Overview in Applications of sensors in Civil Engineering.						
Learning Resources							
	1. A.K.Ghosh, "Introduction to Measurements & Instrumentati	on",					
Text	IIIrded, PHI						
Books	2. A.K.Sawhney&PuneetSawhney, "A Course	in					
DUUKS	MechnanicalMeasuremnets& Instrumentation", DhanapatRai& Co.						
	3. D.V.S.Murty, "Transducers & Instrumentation", PHI.						
	1. Raman Pallas-Arney& John G. Webster, "Sensors & Signal						
Reference Books	Conditioning",2012.						
	2. D.Patranabis, "Sensors and Transducers" 2nd edition., PHI, 2013.						
	3. BC Nakra, KK Chaudhry "Instrumentation, Measurement and Analysis",						
	2nd Edition,TMH						