Natural Language Processing

Course Code	19CS4801A	Year	IV	Semester	II
Course Category	Program Elective- VI	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Machine Learning
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

C	Course Outcomes			
Upon s	successful completion of the course, the student will be able to			
CO1	Understand the fundamental concepts of natural language processing/generation.	L2		
CO2	Apply basic evaluating language models for the probability of the test set.	L3		
CO3	Apply techniques for extracting limited forms of semantic content from texts.	L3		
CO4	Analyze parsing algorithms through the use of context-free grammars and prepare an effective report.	L4		

	Syllabus		
UnitN		Mapped	
0	Contents	CO	
	Regular Expressions, Text Normalization, Edit Distance- Regular		
	Expression, Words, Corpora, Text Normalization, Minimum Edit		
Ι	Distance.	CO1,	
1	N-Gram Language Models-NGrams, Evaluating Language Models,		
	Generalization and Zeros, Smoothing, Kneser-Ney Smoothing, Add-1		
	Smoothing, Add k-smoothing, Backoff and Interpolation, Katz backoff,		
	Good-Turing backoff.		
	Labeling for Parts of Speech- English Word Classes, Part-of-Speech		
Π	Tagging, Named Entities and Named Entity Tagging, HMM Part-of-	CO1,	
п	Speech Tagging, Conditional Random Fields (CRFs), Evaluation of	CO2	
	Named Entity Recognition.		
III	Formal Grammars of English- Constituency, Context-Free Grammars,	CO1,	
111	Some Grammar Rules for English, Treebanks, Grammar Equivalence and	CO4	

	Normal Form, Lexicalized Grammars. Syntactic Parsing- Ambiguity, CKY Parsing: A Dynamic Programming Approach, CCG Parsing.		
IV	Dependency Parsing- Dependency Relations, Dependency Formalisms, Transition-Based Dependency Parsing, Graph- Based Dependency Parsing. Representation of Sentence Meaning- Model- Theoretic Semantics, First-Order Logic, Event and State Representations, Description Logics.	CO1, CO3	
v	Semantic Parsing, Information Extraction- Relation Extraction, Relation Extraction Algorithms, Extracting Times, Template Filling. Lexicons for Sentiment, Affect and Connotation- Defining Emotion, Available Sentiment and Affect Lexicons, Semi-supervised Induction of Affect Lexicons, Supervised Learning of Word Sentiment.	CO1, CO3	

Le	Learning Resources		
Te	ext Books		
1.	Speech and Language Processing: An introduction to Natural Language Processing,		
	Computational Linguistics and Speech Recognition, Daniel Jurafsky and James H Martin,		
	Third Edition, 2020.		
Re	eferences		
1.	Natural Language Processing Recipes, Akshay Kulkarni, AdarshaShivananda, 2019, Apress.		
2.	Applied Text Analysis with Python, Benjamin Bengfort, Tony Ojeda, Rebecca Bilbro, 2018,		
	O'Reilly Media.		
3.	Natural Language Processing: An information Access Perspective by Kavi Narayana Murthy,		
	2006, EssEss Publications.		
4.	Statistical Language Learning, Charniack, Eugene, 1993, MIT Press.		
e-l	Resources and other Digital Material		
1.	https://web.stanford.edu/~jurafsky/slp3/		
2.	https://swayam.gov.in/nd1_noc19_cs56/preview		
3.	https://online.stanford.edu/courses/xcs224n-natural-language-processing-deep-learning		
4.	https://www.coursera.org/specializations/natural-language-processing		