PVP 19

OPTIMIZATION TECHNIQUES

Course Code	19ME2701A	Year	IV	Semester	I
Course Category	IDE-2	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Operations Research
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes		
Upon successful completion of the course, the student will be able to		
CO1	Apply various Classical optimization techniques	L3
CO ₂	Select suitable Numerical method for optimization of Engineering Problems.	L4
CO3	Analyze multi stage decision making process through dynamic programming	L4
CO4	Enumerate fundamentals of Integer programming technique	L3

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L:Low)

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 3 3 2 2 2 2 2 CO2 2 3 2 2 2 2 2 2 3 3 CO₃ 2 2 2 2 CO4 3 2 2 2 2 2 2 Average* 3 2 (Rounded to nearest integer)

Syllabus				
Unit No	Contents	Mapped CO		
Unit-I	Introduction to optimization: Introduction, engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function, classification of optimization problems, optimization techniques. Classical Optimization techniques: Introduction, single variable optimization, multi variable optimization with no constraints, multi variable optimization with equality constraints-Lagrange multiplier method.	CO1		
Unit- II	Non-linear programming, I : One Dimensional Minimization Methods: Introduction, unimodal function, elimination methods-unrestricted search, exhaustive search, interval halving method, Fibonacci method, golden section method, interpolation method,	CO2		
Unit- III	Non-linear programming II: Direct Search Method- Nelder- Mead Simplex method, Indirect search methods- steepest descent method (Cauchy's method), Newton Method, Marquardt Method	CO2		
Unit- IV	Dynamic Programming: Multistage decision processes, Concepts of sub optimization- calculus method and tabular methods, Linear programming as a case of D.P	CO3		

PVP 19

	Integer Programming: Introduction, Graphical	Representation,	
Unit-	Gomory's cutting plane method, Balas algorith	m for zero-one CO4	
V	programming, Branch-and- bound method, Penalty	Function method; CO4	
	Basic approaches of Interior and Exterior penalty function methods.		

Learning Resource

Text books:

- 1. S.S.Rao, Engineering optimization theory and practice, 3rd Edition, New age international, 2007.
- 2. Van Wylen, Fundamentals of Classical Thermodynamics, John Wylie.

Reference books

- 1. H.A.Taha, Operations Research, 9th Edition, Prentice Hall of India, 2010.
- 2. F.S.Hillier, and G.J.Lieberman, Introduction to Operations Research, 7th Edition, TMH, 2009.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/111/105/111105039/
- 2. https://nptel.ac.in/courses/106/108/106108056/
- 3. https://nptel.ac.in/courses/111/104/111104071/
- 4. https://nptel.ac.in/courses/112/105/112105235/