PVP-19

RADAR SYSTEMS							
Course Code	19EC4702D	Year	IV	Semester	Ι		
Course	Program	Branch	ECE	Course Type	Theory		
Category	Elective - V						
Credits	3	L-T-P	3-0-0	Prerequisites	AC, AAS		
Continuous	30	Semester	70	Total Marks:	100		
Internal		End					
Evaluation:		Evaluation:					
Course Outcomes							

	Course Outcomes					
Upor	a successful completion of the course, the student will be able to					
CO1	Interpret the complete radar range equation and statistical parameters of Noise L2					
CO2	Analyse the fixed and moving targets using different types of radar systems. L4					
CO3	Identify various tracking methods, different types of display devices & duplexers.					
CO4	Apply the various techniques in radar receivers for detection of signals in noise. L3					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO11	PO12	PSO1	PSO2
CO1	3	3	1							1	2
CO2	3	1	2							1	2
CO3	3	3	2							1	2
CO4	3	3	2							1	2
Average* (Rounded to nearest integer)	3	3	2							1	2

	Syllabus	
Unit No.	Contents	Mapped CO
I	Nature of Radar : Maximum Unambiguous Range, Radar Waveforms, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Minimum Detectable Signal, Receiver Noise and SNR, Integration of Radar Pulses, Radar Cross Section of Targets, Transmitter Power, PRF and Range Ambiguities, System Losses	CO1
II	CW and Frequency Modulated Radar : Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar. FM-CW Radar, Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Multiple Frequency CW Radar.	CO2
III	MTI and Pulse Doppler Radar: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Staggered PRFs. Range Gated Doppler Filters, Non-coherentMTI, MTI versus Pulse Doppler Radar.	CO2

DADAD SVSTEMS

PVP-19

IV	Tracking Radar: Tracking with Radar, Sequential Lobing,			
	Conical Scan, Monopulse Tracking Radar – Amplitude	CO3		
	Comparison Monopulse (one and two coordinates), Phase	COS		
	Comparison Monopulse. Comparison of Trackers.			
V	Detection of Radar Signals in Noise : Introduction, Matched Filter			
	Receiver – Response Characteristics and Derivation, Correlation			
	Function and Cross-correlation Receiver, Efficiency of Non-matched	CO4 &		
	Filters Matched Filter with Non-white Noise. Radar Receivers -	CO5		
	Noise Figure and Noise Temperature. Displays – types. Duplexers –			
	Branch type and Balanced type.			

Learning Resources

Text Books

Introduction to Radar Systems – Merrill I. Skolnik, 2nd Edition, McGraw-Hill.
Microwave and Radar Engineering – Gottapu Sasi Bhushana Rao

Reference Books

- 1. Introduction to Radar Systems Merrill I. Skolnik, 3rd Edition, Tata McGraw-Hill,
- Understanding Radar Systems Simon kingsley, McGraw-Hill, 1st edition., 1992
- 3. Radar Principles- Peyton Z. Peebles, Jr., Wiley India Pvt. Ltd., 2009

e- Resources & other digital material

1. https://deebak.files.wordpress.com/2009/05/skolnik.pdf