PVP-19

ANALOG IC	DESIGN
-----------	---------------

Course Code	19EC4702C	Year	IV	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective V				
Credits	3	L-T-P	3-0-0	Prerequisites	VLSI Design
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes					
Upon successful completion of the course, the student will be able to						
CO1	Contrast MOS devices, its models and differential amplifiers.	L4				
CO2	Build single stage and differential amplifiers using MOSFET	L3				
CO3	Analyze OP-AMP based Circuits.	L4				
CO4	Learn layout and packaging processes	L2				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

Strength of correlations (c ringh, 2 ricearani, rizow)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1								2	1
CO2	3	2	2	2	1								2	1
CO3	3	2	2	2	1								2	1
CO4	3	2	2	2	1								2	1
Average* (Rounded to nearest integer)														

Syllabus					
Unit No.	Contents	Mapped CO			
Ι	Basic MOS Device Physics: General Considerations, MOS I/V	CO1,			
	Characteristics, Second-Order Effects, MOS Device Models.	CO2			
	Single Stage and Differential Amplifiers: Common-Source				
Π	Stage, Source Follower, Common- Gate Stage, Cascode Stage,	CO1,			
	Basic Differential Pair, Common-Mode Response, Differential	CO2			
	Pair with MOS Loads.				
III	Operational Amplifiers: General Considerations, One-Stage Op Amps, Two-Stage Op Amps, Gain Boosting, Common- Mode Feedback, Input Range Limitations, High-Slew-Rate Op Amps, Power Supply Rejection.	CO3			
IV	Nanometer Design Studies: Transistor Design Considerations, Deep-Submicron Effects, Transconductance Scaling, Transistor Design, Op Amp Design Examples, High-Speed Amplifier.	CO3			
V	Layout and Packaging: General Layout Considerations, Analog Layout Techniques, Substrate Coupling, Packaging.	CO4			

PVP-19

Learning Resources

Text Books

1. Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2/e, Mc-Graw Hill Education, 2017

Reference Books

- 1. Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits, 7/e, Oxford University Press.
- 2. R. Jacob Baker, CMOS Circuit Design, Layout and Simulations, 3/e, IEEE press, 2010.
- 3. David A. Johns, Ken Martin, Analog Integrated Circuit Design, 2/e, John Wiley & Sons.
- 4. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.