PVP-19

BIOMEDICAL SIGNAL PROCESSING								
Course	19EC4702B	Year	IV	Semester	Ι			
Code								
Course	Program	Branch	ECE	Course Type	Theory			
Category	Elective-V							
Credits	3	L-T-P	3-0-0	Prerequisites	Nil			
Continuous	30	Semester	70	Total Marks:	100			
Internal		End						
Evaluation:		Evaluation:						

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Analyse ECG, EEG, EMG and PCG waveforms by applying signal processing,					
	reduction and filtering techniques (L4).					
CO2	Analyse ECG, EEG, EMG and PCG signals using data acquisition, Data Reduction					
	methods (L4).					
CO3	Determine the disorders related to Neurological Advanced Signal processing					
	techniques & Modelling of Biomedical Systems by using advanced signal processing					
	techniques (L5).					
CO4	Evaluate the medical signals by using advanced techniques (L5).					
CO5	Analyse the various data compression methods (L4)					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2		3					2		2	3
CO2	3	3	3	2		3					2		2	3
CO3	3	3	3	2		3					2		2	3
CO4	3	3	3	2		3					2		2	3
CO5	3	3	3	2		3					2		2	3
Average* (Rounded to nearest integer)	3	3	3	2		3					2		2	3

Syllabus							
Unit	Contents	Mapped					
No.		СО					
Ι	Introduction to Biomedical signals: Bio-signal Characteristics of	CO1 ,CO4					
	Electro Cardiogram (ECG), Electroencephalogram (EEG),						
	Electromyogram (EMG), Phonocardiogram (PCG), Objectives of						
	Biomedical signal analysis, Difficulties in Biomedical signal						
	analysis, Computer-aided diagnosis						
II	ECG Signal Processing: ECG data acquisition, ECG lead system,	CO1,CO2,					
	ECG parameters and their estimation, ECG QRS detection	CO4					
	techniques: Template matching, differentiation based QRS detection						
	techniques. Estimation of R-R Interval: Finite first difference						
	method. The use of multi-scale analysis for parameter estimation of						
	ECG waveforms, Arrhythmia analysis monitoring, long term						
	continuous ECG recording						
L							

PVP-19

III	ECG Data Reduction Techniques: Direct data compression	CO1,CO2,							
	techniques, direct ECG data compression techniques: Turing point	CO4,CO5							
	algorithm, AZTEC algorithm and FAN algorithm, other data								
	compression techniques: data compression by DPCM, data								
	compression method comparison.								
IV	Neurological applications: EEG rhythms & waveforms, EEG	CO1,CO3,							
	applications- Epilepsy, sleep disorders, brain computer interface.	CO4							
	Modeling EEG- linear, stochastic models - Nonlinear modeling of								
	EEG - artifacts in EEG & their characteristics and processing -								
	Nonparametric spectral analysis, Model based spectral analysis -								
	EEG segmentation - Joint Time-Frequency analysis - correlation								
	analysis of EEG channels -coherence analysis of EEG channels.								
	Evoked potentials- noise characteristics, Noise reduction by linear								
	filtering.								
V	Advanced Signal processing techniques & Modeling of	CO1,CO3,							
	Biomedical Systems: Optimal Signal Processing: Wiener Filters,	CO4							
	Adaptive Signal Processing, Adaptive Noise Cancellation.								
	Parametric system modeling, Autoregressive or All-Pole modeling,								
	Pole-Zero Modeling.								

Learning Resources

Text Books

1. Rangaraj M Rangayyan ,"Biomedical Signal Analysis" -, IEEE Press, 2001

2. Biomedical Digital Signal Processing – Willis J Tomkins, PHI, 1993

Reference Books

1. Biomedical Digital Signal Processing Principles and Techniques-D C Reddy, TMH, 2005

e- Resources & other digital material

1. http://www.biomedicahelp.altervista.org > Segnali

2.https://www.digimat.in/nptel/courses/video/108105101/L12.html