SENSORS AND TRANSDUCERS FOR REMOTE APPLICATIONS

Course Code	19EC4701F	Year	IV	Semester	I
Course	Programme	Branch	ECE	Course Type	Theory
Category	Elective-IV				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to				
CO1	CO1 Understand the basic concepts and characteristics of Sensors (L2)				
CO2	Discuss the construction, working principle, characteristics and applications of				
	various resistive Sensors.(L4)				
CO3	Discuss the construction, working principle, characteristics and applications of				
	various Capacitive Sensors.(L4)				
CO4	Discuss the construction, working principle, characteristics and applications of				
	Self-Generating Sensors.(L4)				
CO5	Understands the basic concepts of telemetry systems (L2)				

N	Lapping of	course outcomes	with	Program outcomes	(CO/	PO/PSO	Matrix)
---	-------------------	-----------------	------	------------------	------	--------	---------

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | P PO10 PO11 PO12 PSO1 PSO2 **CO1** CO₂ CO3 CO₄ CO5 Average* (Roundedto nearest integer)

	Syllabus				
Unit No.	Contents	Mapped CO			
I	Introduction to Sensors based measurement systems- General Concepts and Terminology, Sensor Classification-sensors, General input-output Configuration, Static characteristics of measurement system, Dynamic Characteristics, Other sensor characteristics.	CO1			
II	Resistive Sensors - Potentiometers, Strain Gages, Resistive Temperature Detectors (RTD), Thermistors, Magneto resistors, Light- Dependent Resistors (LDR), Resistive Hygrometers, Resistive Gas Sensors.	CO2			

III	Capacitive Sensors - Variable capacitor, Differential capacitor.	CO3				
	Inductive sensors - Variable reluctance sensors, Eddy current sensors,					
	Linear variable differential transformers (LVDT), variable					
	transformers, Magneto elastic and magnetostrictive sensors.					
IV	Self-Generating Sensors- Thermoelectric Sensors, Piezoelectric	CO4				
	Sensors, Pyroelectric Sensors, Photovoltaic sensors, Electrochemical					
	Sensors.					
V	Introduction to Telemetry principles, Basic System, Classification,	CO5				
	Non-electrical Telemetry system, Voltage and Current Telemetry					
	System, Local transmitters and convertors, frequency telemetering,					
	Satellite Telemetry, Fibre optic telemetry					

Learning Resources

Text Books

- 1. Ramon Pallas-Areny, Jhon G. Webster, "Sensors and Signal Conditioning" -2nd Edition, John Wiley and Sons
- 2. D Patrabnis, "Telemerty Principles", Tata McGraw Hill, 2007.

Reference Books

- 1. A.K. Sawhney, "Electrical and Electronic Measurements and Instrumentation", Dhanpat Rai.
- 2. Er. R.K. Rajput, "Electronic Measurements and Instrumentation", S. Chand & Company Ltd. 3rd Edition.
- 3. Bentley, John P., "Principles of Measurement Systems", 4thedition, Pearson/Prentice Hall, 2005.
- 4. Jon. S. Wilson, "Sensor Technology Hand Book", Elsevier Inc., 2005.
