PVP-19

MICROWAVE	ANTENNAS
-----------	----------

Course Code	19EC4701D	Year	IV	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective IV				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Infer microwaves and radio waves and identify the applications of microwaves					
	(L2).					
CO2	Explain different types of antennas designed for microwave frequency ranges					
	(L2).					
CO3	Develop Microwave antennas for various applications(L3)					
CO4	Take part in the measurement of antenna parameters in the laboratory.(L4)					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

Γ

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2									3	
CO2	3	3	3	3									3	
CO3	3	3	3	3	3								3	
CO4	3	3	3	3	3				2	2			3	
Average* (Rounded to nearest integer)	3	3	3	3	3				2	2			3	

	Syllabus						
Unit No.	Contents	Mapped CO					
Ι	Introduction to microwave antennas: Introduction, Microwave frequency bands, Applications of microwave antennas and advantages of microwaves. Broadband antennas : Biconical antenna, bow-tie and cylindrical dipole.	CO1 , CO2, CO3					
II	Frequency independent antennas, antenna miniaturization: Introduction, theory, equiangular spiral antennas, log-periodic antennas, Aperture antennas-Rectangular apertures, circular apertures, Horn antennas-E-Plane, H-Plane, Pyramidal and conical horn antennas and lens antennas-Introduction ,Geometry of Non- metallic Dielectric lenses. Zoning, Applications.	CO1 , CO2, CO3					
III	Reflector antennas : Introduction, Flat Sheet and Corner Reflectors, Paraboloid Reflectors – Geometry, Pattern Characteristics, Feed Methods, Reflector Types	CO1 , CO2, CO3					

PVP-19

	-	
IV	Micro strip antennas: Introduction, Features, Advantages and	CO1 ,
	Limitations, Rectangular Patch Antennas – Geometry and	CO2,
	Parameters, Characteristics of Micro strip Antennas. Rectangular	CO3
	patch, circular patch antennas-Geometry and parameters	
V	Antenna Measurements: Introduction, Antenna ranges, radiation	CO4
	patterns, gain measurements, directivity measurements, radiation	
	efficiency, impedance measurements, current and polarization	
	measurements.	

Learning Resources

Text Books

Contantine A. Balanis, Antenna Analysis and Design, 3/e, Wiley Publications, 2009.
A.R. Harish, M. Sachidananda, Antennas and Wave Propagation, 1/e, Oxford University Press, 2007.

Reference Books

1. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiation Systems, Prentice Hall of India, 2012

2. Rajeswari Chatterjee, Antenna Theory and Practice, 2/e, New Age International Publishers, 2004. 3. F. E. Terman, Electronic and Radio Engineering, McGraw Hill, 1947
