PVP-19

Course Code19EC4701BYearIVSemesterICourse CategoryProgram Elective IVBranchECECourse TypeTheoryCredits3L-T-P3-0-0PrerequisitesDigital Signal ProcessingContinuous Internal Evaluation:30Semester End Evaluation:70Total Marks: 100	DIGITAL SIGNAL COMPRESSION								
Course CategoryProgram Elective IVBranchECECourse TypeTheoryCredits3L-T-P3-0-0PrerequisitesDigital Signal ProcessingContinuous Internal Evaluation:30Semester End Evaluation:70Total Marks: Internal Evaluation:100	Course Code	19EC4701B	Year	IV	Semester	Ι			
Credits3L-T-P3-0-0PrerequisitesDigital Signal ProcessingContinuous Internal Evaluation:30Semester End Evaluation:70Total Marks: 100	Course Category	Program Elective IV	Branch	ECE	Course Type	Theory			
Continuous Internal30Semester End70Total Marks: 100Evaluation:Evaluation:100	Credits	3	L-T-P	3-0-0	Prerequisites	Digital Signal Processing			
	Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100			

Course Outcomes

Upon	successful completion of the course, the student will be able to
CO1	Analyse various coding techniques used for signal compression (L4)
CO2	Calculate rate distortion for different sources (L2).
CO3	Compare different quantization techniques used for compression (L4)
CO4	Examine the compression standards of audio, image and video signals. (L2).
CO5	Apply various signal compression techniques and evaluate their performance (L3).

---Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

I . I .	8	8	
Note: 1	- Weak correlation	2-Medium correlation	3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	2							1	2	1
CO5	3	3	2	2	2							1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2							1	2	1

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	MathematicalPreliminariesforLosslessCompression:Overview, a brief introduction to information theory, derivation of average information, models, coding.Huffman Coding:Overview, the Huffman coding algorithm.Arithmetic Coding:Introduction, coding a sequence, generating a binary code, comparison of Huffman and Arithmetic coding.Arithmetic coding.	CO1
Π	Mathematical Preliminaries for Lossy Coding:Introduction,distortion criteria, information theory revisited models.Scalar Quantization:Introduction, the quantization problem,uniform quantizer, adaptive quantization, non-uniform quantization.	CO2, CO3

PVP-19

III	Vector Quantization: Introduction, advantages of vector	
	quantization over scalar quantization, the Linde-Buzo-Gray	CO3
	algorithm.	
	Differential Encoding: Introduction, the basic algorithm, prediction	
	in DPCM, Adaptive DPCM, delta modulation, speech coding.	
IV	Transform Coding: Transforms of interest, quantization and coding	
	of transform coefficients, application to image compression—JPEG,	CO3,
	application to audio compression-the MDCT.	CO4
	Subband Coding: Introduction, filters, some filters used in subband	
	coding, the basic subband coding algorithm.	
V	Audio Coding: Introduction, MPEG audio coding.	
	Video compression: Introduction, motion compensation, video	CO5
	signal representation ITU-T recommendation H 261	

L	earning	Resources
_	vai mine	Itesources

Text Books
1. Khalid Sayood, Introduction to Data Compression, 4/e, Elsevier, India, 2012.
Reference Books
1. Jayant, Noll, Digital Coding of Waveforms-Principles and Applications to Speech
and Video Prentice Hall, New York, 1984.
2. David Salomon, Data Compression: The Complete Reference, Springer, 2000.
3. ZiNian Li, Fundamentals of Multimedia, Pearson Education, 2003.

e- Resources & other digital material 1. http://www.nptel.iitm.ac.in/