OPTIMIZATION TECHNIQUES

Course Code	19ME2701A	Year	IV	Semester	I	
Course Category:	Disciplinary		ME	Course Type	Theory	
Credits:	3	L-T-P	3 - 0 - 0	Prerequisites:	Nil	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to			
D1	Apply various Classical optimization techniques	L3		
CO ₂	Select suitable Numerical method for optimization of Engineering Problems.	L4		
CO3	Analyze multi stage decision making process through dynamic programming	L4		
CO4	Enumerate fundamentals of Integer programming technique	L3		

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H: High, M: Medium, L: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO ₁	2	3	3	2		2		2		2		2	2	2
CO ₂	2	3	3	2		2		2		2		2	2	2
CO ₃	2	3	3	2		2		2		2		2	2	2
CO4	2	2	3	2		2		2		2		2	2	2

Syllabus						
Unit No	Contents					
Unit-I	Introduction to optimization: Introduction, engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function, classification of optimization problems, optimization techniques. Classical Optimization techniques: Introduction, single variable optimization, multi variable optimization with no constraints, multi variable optimization with equality constraints-Lagrange multiplier method.					
Unit-II	Non-linear programming, I : One Dimensional Minimization Methods: Introduction, unimodal function, elimination methods- unrestricted search, exhaustive search, interval halving method, Fibonacci method, golden section method, interpolation method,	CO2				
Unit-III	Non-linear programming II: Direct Search Method- Nelder- Mead Simplex method, Indirect search methods- steepest descent method (Cauchy's method), Newton Method, Marquardt Method	CO2				
Unit-IV	Dynamic Programming: Multistage decision processes, Concepts of sub optimization- calculus method and tabular methods, Linear programming as a case of D.P					

	Integer Programming: Introduction, Graphical Representation, Gomory's			
Unit-V	cutting plane method, Balas algorithm for zero-one programming, Branch-	CO4		
Cint- v	and- bound method, Penalty Function method; Basic approaches of Interior	004		
	and Exterior penalty function methods.			

Learning Resource

Text books:

- 1. S.S.Rao, Engineering optimization theory and practice, , 3rd Edition, New age international, 2007.
- 2. Van Wylen, Fundamentals of Classical Thermodynamics, .John Wylie.

Reference books

- 1. H.A.Taha, Operations Research, , 9th Edition, Prentice Hall of India, 2010.
- 2. F.S.Hillier, and G.J.Lieberman, Introduction to Operations Research, , 7th Edition, TMH, 2009.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/111/105/111105039/
- 2. https://nptel.ac.in/courses/106/108/106108056/
- 3. https://nptel.ac.in/courses/111/104/111104071/
- 4. https://nptel.ac.in/courses/112/105/112105235/