Parallel Computing

Course Code	19CS4701D	Year	IV	Semester	Ι
Course Category	Program Elective - IV	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Operating Systems, Computer Organization
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the concepts of Parallel computing/programming	L2			
CO2	Apply various Distributed programming Algorithms for a given Program.	L3			
CO3	Apply various Shared Memory Programming methods with Pthreads/OpenMP on a given matrix/program.	L3			
CO4	Apply parallelism and searching for a given tree structure.	L3			

	Syllabus				
Unit No.	Contents	Mapped CO			
Ι	 Introduction to Parallel Computing: Need of Performance, Building Parallel Systems, Why to Write Parallel Programs? How to Write Parallel Programs? Approach : Concurrent, Parallel, Distributed Parallel Hardware and Parallel Software :Background, Modifications to the von Neumann Model, Parallel Hardware, Parallel Software, Input and Output, Performance, Parallel Program Design and Writing and Running Parallel Programs 	CO1			
П	Distributed Memory Programming with MPI: Getting Started, The Trapezoidal Rule in MPI, Dealing with I/O, Collective Communication, MPI Derived Data types, A Parallel Sorting Algorithm.	CO1,CO2			

ш	Shared Memory Programming with Pthreads : Processes, Threads and Pthreads, Hello, World program ,Matrix-Vector Multiplication, Critical Sections Busy-Waiting, Mutexes, Producer-Consumer Synchronization and Semaphores, Barriers and Condition Variables, Read-Write Locks, Caches, Cache- Coherence, and False Sharing and Thread-Safety	CO1,CO3
IV	Shared Memory Programming with OpenMP : Introduction to Open MP, The Trapezoidal Rule, Scope of Variables, The ReductionClause, The Parallel For Directive, More About Loops in OpenMP: Sorting, SchedulingLoops, Producers and Consumers, Caches, Cache-Coherence, and False Sharing andThread-Safety	CO1,CO3
V	Parallel Program Development and Parallel Algorithms : Two N-Body Solvers, Tree Search and Case Studies	CO1,CO4

Learning Resources

Text Books

1. An Introduction to Parallel Programming, Peter S Pacheco, 2011, Elsevier India.

References

- 1. Parallel Programming for Multicore and Cluster Systems, Thomas Rauber, GudulaRünger, Second Ed., Springer, 2015
- 2. Introduction to Parallel Computing(From Algorithms to Programming on State-of-the-Art Platforms), Roman Trobec, BoštjanSlivnik, Patricio Bulić, BorutRobič, 2018, Springer Nature Switzerland.
- 3. Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis&Vipin Kumar, Second edition, 2004, Pearson Education

e-Resources & Other Digital Material

1. www.https://www.udemy.com/

2. https://www.coursera.org/