PVP SIDDHARTHA INSTITUTE OF TEHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

MACHINE LEARNING

Course Code	19IT4601E	Year	III	Semester	II
Course Category	PC	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	DATA
					MINING
Continuous Internal		Semester			
Evaluation :	30	End	70	Total Marks:	100
		Evaluation:			

	Blooms Taxonomy Level		
Upon s	uccessful completion of the course, the student will be able to		
CO1	Apply the different learning algorithms.	L2	
CO2	Analyze the learning techniques for given dataset	L3	
CO3	Evaluate a model using machine learning to solve a problem	L5	

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2												2	2
CO2		3											2	2
CO3			3	3	3								2	2

	Syllabus	
Unit No	Contents	Mapped CO
I	Introduction : Well Posed Learning Problems, Designing a Learning system, Perspectives and Issues in Machine Learning Concept Learning: Concept Learning as search, Find-S, Version Spaces and Candidate Elimination Algorithm, Inductive bias. Decision Tree Learning: Decision Tree Representation, Decision Tree Learning Algorithm, Hypothesis Space Search.	CO1,CO2, CO3
II	Evaluating Hypothesis : Motivation, Estimating hypothesis accuracy, Basics of sampling theorem, General approach for deriving confidence intervals, Difference in error of two hypothesis, Comparing learning algorithms.	CO1,CO2, CO3
III	BayesianLearning:BayesTheoremandConceptLearning,MaximumLikelihood,MinimumDescriptionLengthPrinciple,BayesOptimalClassifier,GibbsAlgorithm,NaïveBayesClassifier,BayesianBeliefNetwork,EMAlgorithm.	CO1,CO2, CO3
IV	Instance Based Learning : K-Nearest Neighbor Learning, Locally Weighted Regression, Radial Basis Functions, Case Based Reasoning, Lazy and Eager learning.	CO1,CO2, CO3
V	Learning Set of Rules: Sequential covering algorithms, Learning Rule Sets, Learning First Order Rules, Learning Sets of First Order Rules, Induction as Inverted Deduction, Inverting Resolution.	CO1,CO2, CO3

Learning Resources
Text books
1. Machine Learning M M. Mitchell Indian Edition Mc Graw Hill 2013
References
1.Introduction to Machine Learning with Python Andreas C Muller & Sarah Guido First Shroff
Publishers 2019
2. Thoughtful Machine learning Mathew Kirk First Shroff Publishers 2019
e-Resources and other Digital Material
1. Hands-On Machine Learning With Scikit-learn and Tensorflow Aureliene Geron First
Oreilly 2017
https://www.kaggle.c om/general/95287
2. The Elements of Statistical Learning Trevor Hastie, Robert Tibshirani, Jerome H.

Friedman Second ---- 2009 https://web.stanford.edu/~hastie/Papers/ES LII.pdf