PVP-19

ASIC DESIGN								
Course Code	19EC4602C	Year	III	Semester	II			
Course	Program	Branch	ECE	Course Type	Theory			
Category	Elective-III							
Credits	3	L-T-P	3-0-0	Prerequisites	Digital Logic			
					Design			
Continuous	30	Semester	70	Total Marks:	100			
Internal		End						
Evaluation:		Evaluation:						

Upon successful completion of the course, the student will be able to					
CO1 Describe the programming technologies of an ASIC and its c	onstruction (L2).				
CO2 Design and simulation of digital ICs using Verilog (L5)					
CO3 Compare different testing procedures for VLSI circuits. (L2)					
CO4 Analyze the algorithms of partitioning, placement and routing	; (L4)				

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		3					3			3	
CO2	3		3		3					3			3	
CO3	3	3								3			3	
CO4	3	3								3			3	
Average* (Rounded to nearest integer)	3	3	3	3	3					3			3	

	Syllabus					
Unit No.	Contents	Mapped CO				
I	Types of ASICs: Full-Custom ASICs, Standard-cell-based ASICs, Gate array-based ASICs, channelled gate array, channel less gate array, structured gate array, programmable logic devices, field programmable gate arrays, design flow, case study. ASIC Cell Libraries. ASIC library design: transistors as resistors, transistor parasitic capacitance	CO1				
II	Verilog: Basics of the Verilog language, operators, hierarchy, procedures and assignments, timing controls and delay, logic-gate modeling, modelling delay, altering parameters. Logic Synthesis: A logic-synthesis example, MULTIPLEXER, inside a logic synthesizer verilog and logic synthesis.	CO2				
III	Simulation: Types of simulation, MUX example, logic systems, how logic simulation works, delay models, static timing analysis, switch-level simulation, transistor-level simulation.	CO2				

PVP-19

IV	Test: The importance of test, boundary-scan test, faults, fault	CO3					
	simulation, automatic test-pattern generation, scan test, built-in self-						
	test, a simple test example.						
V	ASIC Construction: Physical design, system partitioning, partitioning						
	methods.						
	Floor planning and Placement: Floor planning, placement, physical						
	design flow, Routing: Global routing, detailed routing,						

Learning Resources

Text Books

1. Michael John Sebastian Smith, Application-Specific Integrated Circuits, Pearson Education, 2001.

Reference Books

- 1. Jan. M. Rabaey, Digital Integrated Circuits, 2/e, Prentice Hall, 2001
- 2. Sabih Gerez, Algorithms for VLSI Design Automation, Wiley, 1999.
- 3. Wayne Wolf, Modern VLSI Design, 4/e, Pearson Education, 2002.
- 4. Samir Palnitkar, Verilog HDL, 2/e, Pearson Education, 2003