PVP-19

Course Code	19EC4602A	Year	III	Semester	II
÷				~	
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective-III				
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering
					Physics, Analog
					Communications,
					Digital
					Communications
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to							
CO1	CO1 Identify the basic components of Fiber Optic Communication system. (L3).							
CO2	Illustrate different types of Optical Sources, Optical Amplifiers and Optical							
	Detectors. (L2).							
CO3	Apply the concepts of Wavelength Division Multiplexing (L3)							
CO4	Analyse the modulation characteristics and effect of noise (L4).							
CO5	Build fiber optic system (L3).							

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

Note: 1- weak correlation 2-Medium correlation 3-Strong correlation														
* -	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	2										2
CO2	2	3	3	2										2
CO3	2	3	3	2										2
CO4	2	3	3	2										2
CO5	2	3	3	2										2
Average* (Rounded to nearest integer)	2	3	3	2										2

Syllabus						
Unit	Contents					
No.		CO				
Ι	Introduction to Fiber Optic Communications- Block Diagram,	CO-1				
	Advantages.					
	Optic Fiber Waveguides: Ray theory, Step – Index Fiber, Graded –					
	Index Fiber, Attenuation, Pulse Distortion and Information Rate in					
	Optic Fibers					
II	Light Sources and Detectors :	CO-1,				
	Light-Emitting Diodes-Surface Emitting LEDs, Edge Emitting	CO-2				
	LEDs. Laser Principles, Distributed - Feedback Laser Diode,					
	Optical Amplifiers, Principles of Photo detection, Photomultiplier,					
	Semiconductor Photodiode, PIN Photodiode, Avalanche Photodiode.					

PVP-19

III	Couplers and Connectors: Principles, Fiber end Preparation, Splices,	CO-1.						
	Connectors, Source Coupling, Distribution Networks, Directional							
	Couplers, Star Couplers, Switches, Fiber Optical Isolator, Wavelength-							
	Division Multiplexing.							
IV	Modulation, Noise and Detection: Light-Emitting-Diode Modulation and Circuits, Laser-Diode Modulation and Circuits, Analog-Modulation							
	Formats, Digital-Modulation Formats, Optic Heterodyne Receivers, Thermal and Shot Noise, Signal-to-Noise Ratio, Modal Noise, Amplifier Noise, Laser Noise							
V	System Design and Fiber Optical Applications: Analog System	CO-1,						
	Design, Digital System Design, Applications of Fiber Optics.							

Learning Resources

Text Books

1. Optical fiber Communication, Gerd Keiser, Mc Graw Hill. 3rd Edition, 2003

2. Joseph. C. Palais, "Fiber Optic Communications", Pearson Education, Asia, 2002.

Reference Books

1. Howes M.J., Morgan, D.V ,"Optical Fiber Communication", John Wiely.1992

2. John M.Senior, "Optical Fiber Communication: Principles and Practice", Pearson Education, 2nd edition, 2006

John Powers ,"Fiber Optic Systems" Irwin Publications, 1997 3.