ARM SYSTEM DEVELOPMENT

Course Code	19EC4601E	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective II				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to								
CO1	1 Illustrate the features of embedded systems, architecture of ARM7 and applications								
	(L4).								
CO2	Classify between ARM and THUMB instruction set and achieving competency in								
	assembly programming of ARM. (L2).								
CO3	Articulate the exception, interrupts and interrupt handling schemes (L3).								
CO4	Interpret the architectural features of LPC2148 microcontrollers (L2).								
CO5	Demonstrate the hardware and interfacing peripheral devices to LPC2148 (L3)								

Note	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2
CO1	2					2						2	3	2
CO2	3	3	2		2	2						2	3	2
CO3	3	2	2			2						2	3	2
CO4	2					2						2	3	2
CO5	2	3	3	2	2	2	2	2				2	3	3
Average* (Rounded to nearest integer)	3	2	2	1	1	2	1	1				2	3	3

Syllabus									
Unit Contents									
No.		CO							
Ι	Introduction to ARM 7 Architecture: The RISC design philosophy, ARM	CO1							
	design philosophy, embedded system hardware- AMBA bus protocol,								
	embedded system software- applications. ARM core data flow model,								
	Registers, CPSR-Processor modes.								
II	ARM Instructions set: Fundamentals of ARM instructions, Barrel shifter,	CO2							
	Classification and explanation of instructions with examples-Data								
	processing, Branch, Load-store, SWI and Program Status Register								
	instruction, Introduction to THUMB, Differences between ARM and								
	THUMB, Register usage in Thumb.								
III	Exception handling: ARM processor exceptions and modes, vector table, exception priorities, link register offsets. Interrupts- assigning interrupts,	CO3							
	interrupt latency, IRQ and FIQ exceptions with example- code for								
	enabling and disabling IRQ and FIQ exceptions, Comparison between								
	exception and interrupts. Interrupt handling schemes- nested interrupt								
	handler, non-nested interrupt handler. Basic interrupt stack design								

PVP-19

IV	Introduction to ARM7 microcontroller: LPC2148 ARM 7 microcontroller,								
	Features of LPC2148, Architecture of LPC2148, Addressing mode, Memory organization, ARM register model, programmer model,								
	oscillator, PLL, CPSR, SPSR,3stage pipelining.								
V	Interfacing with ARM: LED, GPIO programming with embedded C, LCD interfacing, programming of LCD, ADC, Interfacing of LM35 temperature sensor, DAC, Timers, UART programming, transfer of a	CO5							
	character and receive of a character program.								

Learning Resources

Text Books

1.Andrew N. SLOSS,"ARM System Developer's guide", ELSEVIER Publications, 2016

2. Steve Furber, "ARM System-on-chip Architecture", Pearson Education, 2012

Reference Books

- 1. In Sider 's Guide To Philips Arm7 Based Microcontroller ,Shitex.co.uk
- 2. ARM Assembly Language William Hohl, CRC Press
