PVP-19

REAL-TIME SIGNAL PROCESSING

Course Code	19EC4601B	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective II				
Credits	3	L-T-P	3-0-0	Prerequisites	Digital Signal
					Processing
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes

Upon	Upon successful completion of the course, the student will be able to					
CO1	Generate waveforms using DSK for real time applications (L3)					
CO2	Perform various operations using TMS320C6X DSP Processor (L4).					
CO3	Implement IIR systems in Direct, Cascade and Parallel forms (L3).					
CO4	Develop and realize computationally efficient algorithms on the DSP platform					
	using FFT (L5).					
CO5	Design real-time FIR and IIR filters on the DSP platform (L5).					

k mers

	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
COs	* - Average value indicates course correlation strength with mapped PO COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS02 PS02 PS03 PS04 PS0										PSO2			
COS	3	3	2	2	2	PU0	P07	PUð	P09	POIU	PUII	1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	2							1	2	1
CO5	3	3	2	2	2							1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2							1	2	1

Syllabus					
Unit	Contents	Mapped			
No.		CO			
Ι	Input and output with DSK: Introduction, sampling, reconstruction				
	aliasing, programming examples using C code, basic input and output				
	using polling, basic input and output using interrupts.				
	Real time Sine wave generation: sine wave generation using sin	CO1,			
	function call, sine wave generation with table created by Matlab,	CO2			
	Signal Reconstruction, Aliasing and properties of the AIC23 codec,				
	AM generation, ramp generation.				
II	Architecture and Instruction set of the C6x Processor:				
	Introduction, TMS320C6x architecture, Linear and Circular				
	Addressing Mode, types of Instruction, Assembler Directives, timers,	CO2			
	interrupts, Interrupt control registers, multi-channel buffer serial port,				
	memory considerations, fixed and floating point format, constraints,				
	programming examples using C, Assembly and Linear assembly.				
III	Finite Impulse Response Filters: Introduction, Linear Phase FIR				
	filters, FIR implementation using Fourier series method, FIR	CO2,			

PVP-19

	implementation using window (rectangular, Hanning, Hamming, Blackman) technique, Moving Average Filter FIR Filter design using MATLAB.	CO5			
IVInfinite Impulse Response Filters: Introduction, IIR filter structure: Direct Form-I, Direct Form-II, Cascade and Parallel forms, Impulse invariance method, Bilinear transformation, IIR filter design using MATLAB.					
V	Fast Fourier Transform : Introduction, development of radix-2 FFT algorithms, Decimation in time FFT algorithm, Decimation in frequency FFT algorithm, Inverse Fast Fourier transform using DIT and DIF algorithms. DFT of a sequence of real number without put in CCS graphics display window	CO2, CO4			
	Learning Resources				
Text Bo					
1. Rulph Chassaing, Digital Signal Processing with C6713 and C6416DSK, 2/e Wiley Publications, 2005					
2. DSP processor fundamentals, Architecture& Features-Lapsleyetal. S. Chand & Co.2000					
	nce Books				
1. Sanja McGrav 2. Theo	ay K.Mitra, Digital Signal Processing-A Computer Based Approach, 4/e, w Hill Publications, 2011. ry and Application of Digital Signal Processing - Lawrence R Rabiner & I Gold, Prentice Hall.	Tata			
e- Reso	urces & other digital material				
1. http://www.nptel.iitm.ac.in/					
2. http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html					
3.http://	/cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html				
