PVP-19

MICROPROCESSORS AND MICROCONTROLLERS LAB								
Course Code	19EC3651	Year	III	Semester	II			
Course	Program	Branch	anch ECE Course Type		Lab			
Category	Core							
Credits	1.5	L-T-P	0-0-3	Prerequisites	Computer			
					Architecture and			
					Organization			
Continuous	25	Semester	50	Total	75			
Internal		End		Marks:				
Evaluation:		Evaluation:						

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1 Develop programs using different class of instructions for 8086					
	microprocessor and ARM processor.				
CO2	Analyse assembly language programs; select appropriate IDE and	L4			
	assemble into machine of a microprocessor and microcontroller.				
CO3	Design electrical circuitry to the Microcontroller I/O ports in order to	L6			
	interface with the external devices.				
CO4	Make an effective lab report.	L6			

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation			2-1	Mediu	im coi	rrelati	on	3-Strong correlation						
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2				1	1			2	2
CO2	3	3	2	2	2				1	1			2	2
CO3	3	3	2	2	2				1	1			2	2
CO4	3	3	2	2	2				1	1			2	2
CO5	3	3	2	2	2				1	1			2	2
Average* (Rounded to nearest integer)	3	3	2	2	2				1	1			2	2

Syllabus					
Unit No.	Contents	Mapped CO			
	Experiments with microprocessor 8086 using Assembler:				
1	Arithmetic operations on 8 bit and 16 bit operands	CO1, CO2, CO4			
2	Transfer block of data from one memory location to another	CO1, CO2, CO4			
3	Programs using monitor routines.	CO1, CO2, CO4			
4	Compute maximum, minimum and sorting (ascending and descending).	CO1, CO2, CO4			
5	Generate Fibonacci series, average of N numbers, factorial of N.	CO1, CO2, CO4			
	Experiments with ARM CORTEX M3 Processor using KEIL MDK ARM				

PVP-19

6	A program to toggle LED every second using timer interrupt	CO1, CO2,
		CO3,CO4
7	A program to interface stepper motor and rotate it in	CO1, CO2,
	clockwise and anti-clockwise direction.	CO3,CO4
8	Display the Hex digits 0 to F on a 7-segment LED interface	CO1, CO2,
	with an appropriate delay in between	CO3,CO4
9	Interface a 4x4 keyboard and display the key code on an	CO1, CO2,
	LCD	CO3,CO4
10	Write a program to utilize internal PWM module and	CO1, CO2,
	generate PWM and vary its duty cycle	CO3,CO4

Learning Resources

Text Books 1. Microprocessors and Interfacing – Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rd Edition.

- 2. ARM Microprocessor Systems Cortex M Architecture, Programming, and Interfacing by Muhammad Tahir and Kashif Javed, CRC Press.
- 3. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors by Joseph You **Reference Books**
- 1. Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach in English, by Dr. Alexander G. Dean, Published by Arm Education Media
- 2. Cortex -M3 Technical Reference Manual