Engineering Ethics

Course Code	19CS3651	Year	III	Semester	II	
Course Category	Mandatory Course	Branch	CSE	Course Type	Theory	
Credits	1.5	L-T-P	3-0-0	Prerequisites	Nil	
Continuous Internal Evaluation :	100	Semester End Evaluation:	-	Total Marks:	100	

Course Outcomes							
Upon suc	Upon successful completion of the course, the student will be able to						
CO1	Understand the core values that shape the ethical behaviour of an engineer and Exposed awareness on professional ethics and human values.	L2					
CO2	Understand the basic perception of profession, professional ethics, various moral issues &uses of ethical theories.	L2					
CO3	Understand various social issues, Industrial standards, code of ethics and role of professional ethics in engineering field.	L2					
CO4	Demonstrate responsibilities of an engineer for safety and risk benefit analysis, profession rights and responsibilities of an engineer.	L3					
CO5	Acquire knowledge about various roles of engineers in variety of global issues and able to apply ethical principles to resolve situations that arise in their professional lives.	L3					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of
correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						1	1	3	1	2				
CO2						1	1	3	1	2				
CO3						3	2	3		1				
CO4						3	2	1						
CO5						3	2	2		1	3			

Syllabus					
Unit No.	Contents	Mapped CO			
I	HUMAN VALUES Morals, values and Ethics –Integrity –Work ethic –Service learning –Civic virtue –Respect for others –Living peacefully –Caring –Sharing – Honesty –Courage –Valuing time –Cooperation –Commitment –Empathy –Self-confidence –Character –Spirituality –Introduction to Yoga and meditation for professional excellence and stress management.	CO1			
II	ENGINEERINGETHICS Senses of "Engineering Ethics" –Variety of moral issues –Types of inquiry –Moral dilemmas –Moral Autonomy –Kohlberg"s theory –Gilligan"s theory –Consensus and Controversy – Models of professional roles – Theories about right action –Self-interest –Customs and Religion –Uses of Ethical Theories.	CO2			
Ш	ENGINEERING AS SOCIAL EXPERIMENTATION Engineering as Experimentation –Engineers as responsible Experimenters –Codes of Ethics – A Balanced Outlook on Law.	CO3			
IV	SAFETY, RESPONSIBILITIESAND RIGHTS Safety and Risk –Assessment of Safety and Risk –Risk Benefit Analysis and Reducing Risk – Respect for Authority –Collective Bargaining –Confidentiality –Conflicts of Interest – Occupational Crime –Professional Rights –Employee Rights –Intellectual Property Rights (IPR) –Discrimination.	CO4			
V	GLOBAL ISSUES Multinational Corporations – Business Ethics- Environmental Ethics – Computer Ethics - Role in Technological Development – Weapons Development – Engineers as Managers – Consulting Engineers–Engineers as Expert Witnesses and Advisors –Honesty –Moral Leadership–Sample Code of Conduct.	CO5			

Learning Resources

Text Books

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics –Concepts and Cases", Cengage Learning, 2009
- e- Resources & other digital material

www.onlineethics.org

- 2. www.nspe.org
- 3. www.globalethics.org
- 4. www.ethics.or