Program Elective-III

Neural Networks

Course Code	19CS4602A	Year	III	Semester	II	
Course Category	Program Elective-III	Branch	CSE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Linear, algebra, Statistics and Probability	
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes						
Upon succ	essful completion of the course, the student will be able to:					
CO1	Understand the fundamentals and types of neural networks, Fuzzy logic principles.	L2				
CO2	Apply Back propagation networks for various problems	L3				
CO3	Apply Associative memory and Adoptive resonance theory for real world problems.	L3				
CO4	Apply ANN techniques for solving various problems	L3				

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)											tions		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3					1	1							2
CO3	3					1			2	2				
CO4	3					1	1							2

	Introduction to Artificial Intelligence System: Neural Network, Fuzzy						
	logic, Genetic Algorithm.						
	Fundamentals of Neural Networks: Basic Concepts of Neural Network,						
UNIT-1	Human Brain, Model of Artificial Neuron						
	Neural Network Architecture: Single layer Feed-forward networks,						
	Multilayer Feed-forward networks, Recurrent Networks						
	Characteristics of Neural networks, Learning methods						
	Back propagation Networks: Architecture of Back-propagation (BP)						
	Networks, Back-propagation Learning - Input Layer Computation,						
UNIT-2	Hidden Layer Computation, Output layer Computation, Calculation of	CO1,CO2					
	Error, Training of neural network, Back Propagation Algorithm						
TINITE 2	Associative Memory: Introduction, Autocorrelators, Heterocorrelators,						
UNIT-3	Wang et al"s Multiple Training Encoding Strategy, Applications	CO1,CO3					
	Adaptive Resonance Theory: Introduction - Classical ART networks,						
UNIT-4	Simplified ART architectures, ART1-ART1-Architectre, ART2-	⁷²⁻ CO1,CO3					
	Architecture of ART2, Applications-Character recognition using ART1						
	Applications of ANN: Introduction, Direct applications - Pattern						
UNIT-5	Classification, Associative memories, Application areas -Applications in						
	speech, applications in image processing						

Learning Resources

Text Books

- 1. Neural Networks, Fuzzy Logic and Genetic Algorithms, S.Rajasekaran and G.A. Vijayalakshmi Pai, second edition, 2017, PHI Publications.
- 2. Artificial neural network, B. Yegnanarayana, PHI Publication.

Reference Books

- 1. Neural Networks for Pattern Recognition, Bishop, C. M., 1995, Oxford University Press.
- 2. Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI.
- 3. Build Neural Network with MS Excel sample by Joe choong.

e-Resources & Other Digital Material

- 1. https://www.coursera.org/learn/neural-networks-deep-learning
- 2. https://www.coursera.org/learn/machine-learning