Program Elective-II

Soft Computing

Course Code	19CS4601A	Year	III	Semester	П
Course Category	Program Elective-II	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Mathematics, Probability and Statistics
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes							
Upon suc	Upon successful completion of the course, the student will be able to						
CO1	CO1 Understand the basic concepts of soft computing techniques and their applications L2						
CO2 Apply fuzzy logic to handle uncertainty and solve problems.							
CO3 Apply genetic algorithms to solve engineering problems							
CO4	Apply Nature Optimization algorithms for real-time problems.	L3					

Contrib								ent of I	Progra	m Outc	omes &	Strengt	h of	
correla	correlations (3:Substantial, 2: Moderate, 1:Slight)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													

	101	102	105	104	105	100	107	100	109	1010	1011	1012	1501	1502
CO1	3													
CO2	3					1	1		1	1			1	
CO3	3					1	1						1	1
CO4	3					1	1							2

	Syllabus							
Unit No.	Contents							
I	Introduction to Soft Computing: Concept of computing systems, "Soft" computing versus "Hard" computing, Characteristics of Soft computing Applications of Soft computing techniques: Handwritten Script Recognition, Image Processing and Data Compression, Automotive Systems and Manufacturing, Soft computing based Architecture, Decision Support System.	C01						
п	Fuzzy Set Theory: Fuzzy Versus Crisp, Crisp Sets, Fuzzy Sets, Crisp Relations, Fuzzy Relations. Fuzzy Systems: Crisp Logic, Predicate Logic, Fuzzy Logic, Fuzzy Rule Based Systems, Defuzzification Methods	CO1, CO2						
III	Fundamentals of Genetic Algorithms: Genetic Algorithms: History, Basic Concepts, Creation of Offsprings, Working Principle, Encoding, Fitness Function, Reproduction.	CO1, CO3						
IV	Nature-Inspired Optimization Algorithms: Differential Evolution, Ant and Bee Algorithms, Particle Swam Optimization.	CO1,CO4						
V	Nature-Inspired Optimization Algorithms: The Firefly Algorithm, Cuckoo Search, The Bat Algorithm, The Flower Algorithm, Parameter Tuning and Parameter Control.	CO1,CO4						

Learning Resources

Text Books

1. Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications, S. Rajasekaran, G. A. Vijayalakshmi Pai, 2017, PHI Learning.

2. Nature - Inspired Optimization Algorithms, XIN- SHE YANG, Second Edition, 2020, Elsevier.

Reference Books

- 1. Principles of Soft Computing, S.N.Sivanandam, S.N.Deepa, Wiley India Pvt. Ltd., 2018, Paperback.
- 2. Genetic Algorithms: Search and Optimization. E. Goldberg.
- 3. Fuzzy Sets and Fuzzy Logic-Theory and Applications, George J. Klir and Bo Yuan, Prentice Hall, 2015, Paperback.
- 4. First course on Fuzzy Theory and Applications, Kwang H. Lee, 2005, Springer.
- 5. Neuro Fuzzy and Soft Computing, S. R. Jang, C.T. Sun and E. Mizutani, 2004, PHI / Pearson Education.
- 6. Neural Networks Algorithms, Applications, and Programming Techniques, James A. Freeman and David M. Skapura, 2003, Addison Wesley.

e-Resources & Other Digital Material

1. https://nptel.ac.in/courses/106/105/106105173/

2. <u>https://cse.iitkgp.ac.in/~dsamanta/courses/sca/index.html#resources</u>