WIRELESS SENSOR NETWORKS AND IOT

Course Code	19EC4501F	Year	III	Semester	I
Course	Elective -I	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total Marks:	100
Internal		Evaluation:			
Evaluation:					

Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to						
CO1	Analyse various WSN of Architectures, Protocols, and IOT Network Architecture and						
	Design, (L4).						
CO2	Analyse various WSN of Architectures, Protocols. (L4).						
CO3	Design and Analyse IOT Network Architectures (L5).						
CO4	Evaluate and Designing protocols for Wireless Networks and IOT Network						
	Architectures (L5).						
CO5	Design protocols for Ad Hoc Wireless Networks (L5).						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2		3		2			2	2	2	3
CO2	3	3	2	2		3		2			2	2	2	3
CO3	3	3	2	2		3		2			2	2	2	3
CO4	3	3	2	2		3		2			2	2	2	3
CO5	3	3	2	2		3		2			2	2	2	3
Average* (Rounded to nearest integer)	3	3	2	2		3		2			2	2	2	3

Syllabus					
Unit No.	Contents				
I	Introduction: Key definitions of sensor networks, Advantages of sensor Networks, Unique constraints an challenges, Driving Applications, Enabling Technologies for Wireless Sensor Networks.	CO CO1,CO4			
II	Architectures: Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Optimisation Goals and Figures of Merit, Physical Layer and Transceiver Design Considerations, Personal area networks (PANs), hidden node and exposed node problem, Topologies of PANs, MANETs, WANETs	CO1,CO2 ,CO4			
III	Protocols: Issues in Designing MAC protocol for Ad Hoc Wireless Networks, Design goals of a MAC Protocol for Ad Hoc Wireless Networks and Classifications of MAC Protocols. Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks, Classification of Routing Protocols	CO1,CO2, CO4,CO5			

PVP-19

IV	Genesis of IoT, IoT and Digitization, Connected Roadways, Connected Factory, Smart Connected Buildings, Smart creatures,	, , ,					
	Convergence of IT and OT, IoT Challenges	CO4					
V	IoT Network Architecture and Design, IoT Architectural Drivers, The	CO1,CO3,					
	oneM2M IoT Standardized Architecture, The IoT World Forum						
	(IoTWF) Standardized Architecture, Things: Sensors and Actuators						
	Layer, Communications Network Layer, Applications and Analytics						
	Layer, IoT Data Management and Compute Stack, Edge, Fog, and						
	Cloud computing						

Learning Resources

Text Books

- 1. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. IoT Fundamentals Networking Technologies, Protocols, and Use Cases for the Internet of Things by David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Jerome Henry, Robert Barton by Cisco Press, 2017

Reference Books

- 1. Raghavendra, Cauligi S, Sivalingam, Krishna M., Zanti Taieb, Wireless Sensor Network, Springer 1/e, 2004 (ISBN: 978, 4020, 7883, 5).
- 2. Ian F. Akyildiz and Mehmet Can Vuran, Wireless Sensor Networks, John Wiley and Sond Ltd, Publication, 2010

e- Resources & other digital material

- 1.<u>https://www.ipwea.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=e0619c58-f639-080a-86c2-055ae9c8af4d</u>
- 2.http://www.infocobuild.com/education/audio-video-courses/computer-science/IntroductionToIoT-IIT-Kharagpur/lecture-18.html