DIGITAL COMMUNICATIONS

Course Code	19EC4501A	Year	III	Semester	I
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective - I				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Construct different Baseband Digital Systems. (L3)						
CO2	Analyze different parameters of digital Pass-band modulation Techniques. (L4)						
CO3	Analyze different parameters in Spread Spectrum modulation Techniques. (L4)						
CO4	Develop various Source Coding techniques.(L3)						
CO5	Build Coding sequences for different error correcting codes.(L3)						

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (3-High, 2:Medium, 1:Low)														
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2					1		2	2	1
CO2	3	3	3	2	2					1		2	2	1
CO3	3	3	2	2	2					1		2	2	1
CO4	3	3	3	2	2					1		2	2	1
CO5	3	3	2	2	2					1		2	2	1
Average*	3	3	3	2	2					1		2	2	1
(Rounded to nearest integer)														

	Syllabus					
Unit No.	Contents	Mapped CO				
I	Waveform Coding Techniques: Introduction, Pulse code modulation (PCM), Delta modulation, Adaptive delta modulation, Differential Pulse Code Modulation (DPCM), output Signal to quantization Noise ratio in PCM and DM systems. Base band Pulse Transmission: Inter symbol interference, Nyquist's Criterion for Distortion less Baseband Binary Transmission, Correlative coding.					
II	Signal Space Analysis: Introduction, Gram Schmidt Orthogonalization procedure, Geometric interpretation of signals, Coherent detection of signals in noise, Probability of error, Correlation receiver, Matched filter, Properties. Digital Modulation Techniques: Coherent Phase Shift Keying, Coherent Frequency Shift Keying, Quadrature Phase Shift Keying, Non Coherent Frequency Shift Keying, Differential Phase Shift keying.	CO2				

PVP-19

III	Spread-Spectrum Modulation: Introduction, Pseudo-Noise Sequences,	
	Direct sequence spread spectrum, Processing Gain, Probability of Error,	
	Antijam Characteristics, Frequency- Hop Spread spectrum, Slow frequency	CO3
	Hopping, Fast Frequency Hopping	
ΙV	Information Theory: Introduction, information, Entropy, Source Coding	
	Theorem, Data Compaction, Shannon-Fano coding, Huffman coding,	
	Lempel-Ziv Coding, Discrete memory less channels, Mutual information,	
	channel coding Theorem, Differential Entropy, Information Capacity	CO4
	Theorem and its implications.	
V	Error Control Coding: Introduction, Linear Block codes, Syndrome and its	
	Properties, Syndrome Decoding, Cyclic Codes, Encoder, Syndrome	
	calculator, Convolutional Codes, Code Tree, Trellis and State Diagram.	CO5

Learning Resources

Text Books

- 1. Digital communications, Simon Haykin, John Wiley, 4th Edition 2010 2. Digital Communications–John Proakis, TMH, 3rd Edition, 1995

Reference Books

- 1. Digital and Analog Communication Systems Sam Shanmugam, John Wiley, 1979
- 2. Communication systems—AB Carlson, McGraw-Hill,4th Edition, 2002
- 3. Principles of Communication Systems–H.Taub , D.Schilling, TMH, 3rd Edition, 2008
- 4. Digital communications –B Sklar, Pearson Education, 2nd Edition, 2013

e-Resources & other digital material

- 1. http://www.ece.utah.edu/~npatwari/ece5520/lectureAll.pdf
- 2. http://nptel.iitm.ac.in/syllabus/syllabus.php?subjectId=117105077