COMPUTATIONAL METHODS

Course Code	19ME2501A	Year	III	Semester	I
Course Category:	Inter disciplinary Elective	Branch	CSE/IT/ ECE/EEE/CE	Course Type	Theory
Credits:	3	L-T-P	3 - 0 - 0	Prerequisites:	Nil
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
A	After successful completion of the course, the student will be able to							
CO1	Solve System of equations using direct and iterative methods							
CO2	Solve Boundary and characteristic Value Problems							
CO3	Approximate linear and nonlinear curve using regression analysis							
CO4	Find a numerical solution to partial differential equations							
CO5	Apply finite difference scheme to solve parabolic and hyperbolic partial differential equations							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	

IDIE		
UNIT	Contents	Mapped
No.		COs
I	Introduction to numerical methods applied to engineering problems: Examples ,solving Sets of equations— Matrixnotation—Determinants and inversion—Iterative methods—Relaxation methods—Systemsofnon-linear equations.	CO1
II	Boundary value problems and characteristic value problems : Shooting method– Solution through a set of equations –Derivative boundary conditions–Characteristic value problems.	CO2
III	Curve fitting and approximation of functions :Least square approximation fitting of non-linear curves by least squares –regression analysis- multiple linear regression, non-linear regression.	CO3
IV	Numerical solutions of partial differential equations: Laplace's equations – Representations as a difference equation – Iterative methods for Laplace's equations – Poisson equation – Examples – Derivative boundary conditions	CO4

	– Irregular and non – rectangulargrid.	
	Parabolic partial differential equations: Explicit method— Crank-	
	Nicolson method– Derivative boundary condition–Stability and	
\mathbf{V}	convergence criteria. Hyperbolic partialdifferential equations: Solving	CO5
	wave equation byfinite differences- stabilityof numericalmethod-	
	methodofcharacteristics-waveequationintwo space dimensions.	

Learning Recourse(s)

Text Book(s)

- 1. Steven C. Chapra, Raymond P. Canale ``Numerical Methods for Engineers'' Tata Mc-Grawhill, Fifth edition.
- 2. Curtis F.Gerald, partick.O.Wheatley,"Appliednumerical analysis" Pearson Education Sixth Edition.2002

Reference Book(s)

- 1. Ward cheney&David Kincaid "Numerical mathematics and computing" Brooks/colepublishing company 1999, fourthed ition.
- 2. RileyK.F.M.P.Hobson&BenceS.J," mathematical methods for physics and engineering" Cambridgeuniversitypress,1999.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105041/
- 3. https://www.nptel.ac.in/courses/111/106/111106112/
- 4. https://www.nptel.ac.in/courses/111/105/111105090/