Operating Systems

Course Code	19CS3402	Year	II	Semester	II	
Course Category	Program Core Branch CSE Course Typ		Course Type	Theory		
Credits	3	L-T-P	3-0-0	Prerequisites	Data structures, Computer Organization and Architecture	
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes							
Upon suc	Upon successful completion of the course, the student will be able to:						
CO1	Understand the structure and functionalities of operating systems.	L2					
CO2	Apply various concepts to solve problems related to process synchronization, deadlocks and make an effective report.	L3					
CO3	Apply different algorithms of CPU scheduling, Page replacement and disk scheduling.	L3					
CO4	Analyze process, memory and storage management strategies.	L4					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: Substantial, 2: Moderate, 1: Slight)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3								3	3				
CO3	3													
CO4	3													

Course Content					
UNIT-1	Overview:Introduction: What Operating Systems Do, Computer-System Organization, Computer-System Architecture,Operating-System Structure,Operating-System Operations Operating System Structures: Operating-System Services,User and Operating-System Interface,System Calls,Types of System Calls.	CO1,CO2,C O3, CO4			
UNIT-2	Process Management: Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication. Threads: Overview, Multi-core Programming, Multithreading Models. Process Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms (First-Come, First-Served Scheduling, Shortest-Job-First Scheduling, Priority Scheduling, Round-Robin Scheduling.)	CO1,CO3,C O4			
UNIT-3	Process Synchronization: Background, The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization, Monitors. Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock.	CO1, CO2			
UNIT-4	Memory Management: Main Memory:Background, Swapping, Contiguous Memory Allocation,Segmentation, Paging,Structure of the Page Table Virtual Memory:Background, Demand Paging, Copy-on-Write, Page Replacement, Basic Page Replacement, FIFO Page Replacement, Optimal Page Replacement, LRU Page Replacement, LRU- Approximation Page Replacement,Allocation of Frames, Thrashing.	CO1, CO3,CO4			
UNIT-5	Storage Management: File-System Interface:File Concept, Access Methods, Directory and Disk Structure. File-System Implementation:File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods. Mass-Storage Structure: Overview of Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, FCFS Scheduling, SSTF Scheduling, SCAN Scheduling, C-SCAN Scheduling, LOOK Scheduling, Selection of a Disk-Scheduling Algorithm.	CO1, CO3,CO4			
Learning Resources					

Text book:

1. Operating System Concepts, Abraham Silberchatz, Peter Baer Galvin, Greg Gagne, Ninth Edition, 2016, Wiley India.

References:

- 1. Operating Systems Internal and Design Principles, William Stallings, Ninth Edition, 2018, Pearson
- 2. Operating Systems Harvey M.Deitel, Paul J Deitel and David R.Choffnes, Third Edition, 2019, Pearson.
- 3. Operating Systems A Concept based Approach- D.M. Dhamdhere, Second Edition, 2010, McGraw Hill.

e-Resources and other Digital Material:

- 1. https://onlinecourses.nptel.ac.in/noc19_cs50/
- 2. http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC5l_4pou ojjtd4