Engineering Mathematics - IV (Number Theory and Cryptography)

Course Code	19BS1403	Year	II	Semester	II	
Course Category	Basic Sciences	Branch	CSE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Mathematics, Algebra	
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes						
Upon successful completion of the course, the student will be able to:						
CO1	Understand the fundamental concepts of number theory and cryptography	L2				
CO2	Apply substitution/transposition techniques to design classical encryption ciphers	L3				
CO3	Apply appropriate cryptographic algorithm for a given scenario and make an effective report	L3				
CO4	Apply cryptographic hash functions for message authentication.	L3				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3													
CO3	3								3	3				
CO4	3													

Course Content					
UNIT-1	Basic Concepts in Number Theory: Divisibility and the Division Algorithm, The Euclidean Algorithm, Modular arithmetic, Prime numbers, Fermat's Theorem and Euler's Theorems (without proofs), Testing for Primality, The Chinese Remainder Theorem (without proofs), Discrete Logarithms.	CO1			
UNIT-2	Classical Encryption Techniques: Symmetric Cipher Model, Substitution Techniques-Caesar Cipher, Monoalphabetic Cipher: Playfair, Hill Ciphers, Polyalphabetic Ciphers, Onetime Pad, Transposition Techniques.	CO1,CO2			
UNIT-3	Block Ciphers: Traditional Block Cipher Structure, The Data Encryption Standard, Advanced Encryption Standard, Block Cipher modes of operations.	CO1,CO3			
UNIT-4	Public Key Cryptography: Principles of Public-Key Cryptosystems, The RSA Algorithm, Diffie-Hellman Key Exchange- The Algorithm, Key Exchange Protocols, Man-in-the-Middle Attack.	CO1,CO3			
UNIT-5	Cryptographic Hash Functions: Applications of Cryptographic Hash Functions, Two Simple Hash Functions, Message Authentication Requirements, Message Authentication Functions, MACs based on Hash functions: HMAC	CO1,CO4			

Learning Resources

Text books

1. Cryptography and Network Security- Principles and Practice, William Stallings, Sixth Edition, 2014, Pearson.

References

- 1. An Introduction to the Theory of Numbers, Ivan Niven, Herbert S. Zukerman, Hugh L. Montgomery, Fifth Edition, 2008, Wiley.
- 2. Cryptography: Theory and Practice, Stinson. D, Third Edition, 2012, Chapman & Hall/CRC.

e-Resources and other Digital Material

- 1. https://nptel.ac.in/courses/106/105/106105162/
- 2. https://nptel.ac.in/courses/106/103/106103015/
- **3.** https://nptel.ac.in/courses/106/105/106105031/https://www.coursera.org/learn/number-theory-cryptography