II B.Tech - II Semester – Regular Examinations - MAY 2025

DIGITAL LOGIC AND COMPUTER ORGANIZATION (Common for AIML, DS)

Duration: 3 hours

Max. Marks: 70

CO – Course Outcome

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

		BL	CO
1.a)	Convert $(1101101)_2$ to octal.	L2	CO1
1.b)	Give an example of a don't care condition in a	L2	CO1
	K-map.		
1.c)	Write the Boolean expressions for sum and carry	L2	CO1
	in a half adder.		
1.d)	Difference between latch and flip-flop.	L2	CO1
1.e)	How does a Cache improve CPU performance?	L2	CO1
1.f)	What is the function of a full adder?	L2	CO1
1.g)	Arrange the following memory types in order of	L2	CO1
	speed: Cache, RAM, Hard Disk, Registers.		
1.h)	What is content-addressable memory (CAM)?	L2	CO1
1.i)	What are peripheral devices? Give two examples.	L2	CO1
1.j)	Define vector and non-vector interrupts.	L2	CO1

$\mathbf{PART} - \mathbf{A}$

PART – B

			BL	СО	Max. Marks		
UNIT-I							
2	a)	Convert (2F) ₁₆ into decimal.	L3	CO3	5 M		
	b)	Convert (10110110) ₂ to Excess-3 code	L3	CO3	5 M		
		and BCD 8-4-2-1.					
		OR					
3	a)	State and prove De Morgan's Theorems	L2	CO1	5 M		
		with truth tables.					
	b)	Draw and simplify the Boolean function	L4	CO4	5 M		
		$F(A, B, C) = \Sigma(0, 1, 3, 4, 6)$ using a 3-					
		variable K-map.					
UNIT-II							
4	a)	Explain the steps involved in analyzing a	L2	CO1	5 M		
		combinational circuit with an example.					
	b)	Discuss about encoders and decoders.	L2	CO1	5 M		
OR							
5	a)	Explain the working of a JK flip-flop	L2	CO1	5 M		
		with a truth table and circuit diagram.					
	b)	Describe the parallel-in parallel-out	L2	CO1	5 M		
		(PIPO) shift register with an example.					
IINIT-III							
6	a)	Discuss the role of stack organization in	L3	CO2	5 M		
	,	recursive function execution.	20		~ 111		
	b)	Compare zero-address, one-address, two-	L3	CO2	5 M		
	- /	address, and three-address instruction					
		formats.					
	l						

OR							
7	a)	Describe Booth's multiplication	L3	CO3	5 M		
		algorithm and perform the multiplication					
		of $(-5) \times (3)$ using Booth's method.					
	b)	Explain the addition operation of sign	L2	CO1	5 M		
		magnitude data with examples.					
	UNIT-IV						
8	a)	Explain the difference between SRAM	L2	CO1	5 M		
		and DRAM in terms of working, speed,					
		and cost.					
	b)	Discuss about Associative memory.	L2	CO1	5 M		
		OR					
9	a)	Differentiate between direct-mapped	L4	CO4	5 M		
		cache, fully associative cache, and set-					
		associative cache.					
	b)	Discuss the role of page tables in virtual	L2	CO1	5 M		
		memory management.					
UNIT-V							
10	a)	Explain how data transfer occurs between	L2	CO1	5 M		
		peripheral devices and the CPU.					
	b)	Differentiate between memory-mapped	L4	CO4	5 M		
		I/O and I/O-mapped I/O with an					
		example.					
OR							
11	a)	Discuss the Asynchronous data transfer.	L2	CO1	5 M		
	b)	Explain the working of a DMA controller	L2	CO1	5 M		
		with a block diagram.					